tensorpac.utils.PSD¶
- 
class tensorpac.utils.PSD(x, sf)[source]¶
- Power Spectrum Density for electrophysiological brain data. - Parameters
- xarray_like
- Array of data of shape (n_epochs, n_times) 
- sffloat
- The sampling frequency. 
 
 - Methods - __init__(x, sf)- Init. - plot([f_min, f_max, confidence, interp, …])- Plot the PSD. - plot_st_psd([f_min, f_max, log, grid, …])- Single-trial PSD plot. - show()- Display the PSD figure. - Attributes - Get the frequency vector. - Get the psd value. - 
plot(f_min=None, f_max=None, confidence=95, interp=None, log=False, grid=True, fz_title=18, fz_labels=15)[source]¶
- Plot the PSD. - Parameters
- f_min, f_max(int, float) | None
- Frequency bounds to use for plotting 
- confidence(int, float) | None
- Light gray confidence interval. If None, no interval will be displayed 
- interpint | None
- Line interpolation integer. For example, if interp is 10 the number of points is going to be multiply by 10 
- logbool | False
- Use a log scale representation 
- gridbool | True
- Add a grid to the plot 
- fz_titleint | 18
- Font size for the title 
- fz_labelsint | 15
- Font size the x/y labels 
 
- Returns
- axMatplotlib axis
- The matplotlib axis that contains the figure 
 
 
 - 
plot_st_psd(f_min=None, f_max=None, log=False, grid=True, fz_title=18, fz_labels=15, fz_cblabel=15, **kw)[source]¶
- Single-trial PSD plot. - Parameters
- f_min, f_max(int, float) | None
- Frequency bounds to use for plotting 
- logbool | False
- Use a log scale representation 
- gridbool | True
- Add a grid to the plot 
- fz_titleint | 18
- Font size for the title 
- fz_labelsint | 15
- Font size the x/y labels 
- fz_cblabelint | 15
- Font size the colorbar label labels 
 
- Returns
- axMatplotlib axis
- The matplotlib axis that contains the figure 
 
 
 - 
property freqs¶
- Get the frequency vector. 
 - 
property psd¶
- Get the psd value. 
 
