tensorpac.utils.PSD¶
-
class
tensorpac.utils.
PSD
(x, sf)[source]¶ Power Spectrum Density for electrophysiological brain data.
- Parameters
- xarray_like
Array of data of shape (n_epochs, n_times)
- sffloat
The sampling frequency.
Methods
__init__
(x, sf)Init.
plot
([f_min, f_max, confidence, interp, …])Plot the PSD.
plot_st_psd
([f_min, f_max, log, grid, …])Single-trial PSD plot.
show
()Display the PSD figure.
Attributes
Get the frequency vector.
Get the psd value.
-
plot
(f_min=None, f_max=None, confidence=95, interp=None, log=False, grid=True, fz_title=18, fz_labels=15)[source]¶ Plot the PSD.
- Parameters
- f_min, f_max(int, float) | None
Frequency bounds to use for plotting
- confidence(int, float) | None
Light gray confidence interval. If None, no interval will be displayed
- interpint | None
Line interpolation integer. For example, if interp is 10 the number of points is going to be multiply by 10
- logbool | False
Use a log scale representation
- gridbool | True
Add a grid to the plot
- fz_titleint | 18
Font size for the title
- fz_labelsint | 15
Font size the x/y labels
- Returns
- axMatplotlib axis
The matplotlib axis that contains the figure
-
plot_st_psd
(f_min=None, f_max=None, log=False, grid=True, fz_title=18, fz_labels=15, fz_cblabel=15, **kw)[source]¶ Single-trial PSD plot.
- Parameters
- f_min, f_max(int, float) | None
Frequency bounds to use for plotting
- logbool | False
Use a log scale representation
- gridbool | True
Add a grid to the plot
- fz_titleint | 18
Font size for the title
- fz_labelsint | 15
Font size the x/y labels
- fz_cblabelint | 15
Font size the colorbar label labels
- Returns
- axMatplotlib axis
The matplotlib axis that contains the figure
-
property
freqs
¶ Get the frequency vector.
-
property
psd
¶ Get the psd value.