tensorpac.utils.BinAmplitude¶
-
class
tensorpac.utils.
BinAmplitude
(x, sf, f_pha=[2, 4], f_amp=[60, 80], n_bins=18, dcomplex='hilbert', cycle=(3, 6), width=7, edges=None, n_jobs=-1)[source]¶ Bin the amplitude according to the phase.
- Parameters
- xarray_like
Array of data of shape (n_epochs, n_times)
- sffloat
The sampling frequency
- f_phatuple, list | [2, 4]
List of two floats describing the frequency bounds for extracting the phase
- f_amptuple, list | [60, 80]
List of two floats describing the frequency bounds for extracting the amplitude
- n_binsint | 18
Number of bins to use to binarize the phase and the amplitude
- dcomplex{‘wavelet’, ‘hilbert’}
Method for the complex definition. Use either ‘hilbert’ or ‘wavelet’.
- cycletuple | (3, 6)
Control the number of cycles for filtering (only if dcomplex is ‘hilbert’). Should be a tuple of integers where the first one refers to the number of cycles for the phase and the second for the amplitude [2].
- widthint | 7
Width of the Morlet’s wavelet.
- edgesint | None
Number of samples to discard to avoid edge effects due to filtering
-
__init__
(x, sf, f_pha=[2, 4], f_amp=[60, 80], n_bins=18, dcomplex='hilbert', cycle=(3, 6), width=7, edges=None, n_jobs=-1)[source]¶ Init.
Methods
__init__
(x, sf[, f_pha, f_amp, n_bins, …])Init.
filter
(sf, x[, ftype, keepfilt, edges, n_jobs])Filt the data in the specified frequency bands.
plot
([unit, normalize])Plot the amplitude.
show
()Show the figure.
Attributes
Get the amplitude value.
Get the cycle value.
Get the dcomplex value.
Vector of amplitudes of shape (n_amp, 2).
Vector of phases of shape (n_pha, 2).
Get the phase value.
Get the width value.
Vector of phases of shape (n_pha,) use for plotting.
Vector of amplitudes of shape (n_amp,) use for plotting.
-
filter
(sf, x, ftype='phase', keepfilt=False, edges=None, n_jobs=-1)¶ Filt the data in the specified frequency bands.
- Parameters
- sffloat
The sampling frequency.
- xarray_like
Array of data of shape (n_epochs, n_times)
- ftype{‘phase’, ‘amplitude’}
Specify if you want to extract phase (‘phase’) or the amplitude (‘amplitude’).
- n_jobsint | -1
Number of jobs to compute PAC in parallel. For very large data, set this parameter to 1 in order to prevent large memory usage.
- keepfiltbool | False
Specify if you only want the filtered data (True). This parameter is only available with dcomplex=’hilbert’ and not wavelet.
- edgesint | None
Number of samples to discard to avoid edge effects due to filtering
- Returns
- xfiltarray_like
The filtered data of shape (n_freqs, n_epochs, n_times)
-
plot
(unit='rad', normalize=False, **kw)[source]¶ Plot the amplitude.
- Parameters
- unit{‘rad’, ‘deg’}
The unit to use for the phase. Use either ‘deg’ for degree or ‘rad’ for radians
- normalizebool | None
Normalize the histogram by the maximum
- kwdict | {}
Additional inputs are passed to the matplotlib.pyplot.bar function
- Returns
- axMatplotlib axis
The matplotlib axis that contains the figure
-
property
amplitude
¶ Get the amplitude value.
-
property
cycle
¶ Get the cycle value.
-
property
dcomplex
¶ Get the dcomplex value.
-
property
f_amp
¶ Vector of amplitudes of shape (n_amp, 2).
-
property
f_pha
¶ Vector of phases of shape (n_pha, 2).
-
property
phase
¶ Get the phase value.
-
property
width
¶ Get the width value.
-
property
xvec
¶ Vector of phases of shape (n_pha,) use for plotting.
-
property
yvec
¶ Vector of amplitudes of shape (n_amp,) use for plotting.