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a b s t r a c t 

Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and 

efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models 

on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not 

adequately addressed. With the neuroscience ML user in mind, this paper provides a didactic assessment of the 

class imbalance problem and illustrates its impact through systematic manipulation of data imbalance ratios in (i) 

simulated data and (ii) brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) 

and functional magnetic resonance imaging (fMRI). Our results illustrate how the widely-used Accuracy (Acc) 

metric, which measures the overall proportion of successful predictions, yields misleadingly high performances, 

as class imbalance increases. Because Acc weights the per-class ratios of correct predictions proportionally to 

class size, it largely disregards the performance on the minority class. A binary classification model that learns 

to systematically vote for the majority class will yield an artificially high decoding accuracy that directly reflects 

the imbalance between the two classes, rather than any genuine generalizable ability to discriminate between 

them. We show that other evaluation metrics such as the Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC), and the less common Balanced Accuracy (BAcc) metric - defined as the arithmetic mean 

between sensitivity and specificity, provide more reliable performance evaluations for imbalanced data. Our 

findings also highlight the robustness of Random Forest (RF), and the benefits of using stratified cross-validation 

and hyperprameter optimization to tackle data imbalance. Critically, for neuroscience ML applications that seek 

to minimize overall classification error, we recommend the routine use of BAcc, which in the specific case of 

balanced data is equivalent to using standard Acc, and readily extends to multi-class settings. Importantly, we 

present a list of recommendations for dealing with imbalanced data, as well as open-source code to allow the 

neuroscience community to replicate and extend our observations and explore alternative approaches to coping 

with imbalanced data. 
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. Introduction 

The rise of artificial intelligence (AI) in the last decade has led to

mportant breakthroughs across many areas of science, including neu-

oscience and neuroimaging. New synergies between neuroscience and

I promise to drive both fields forward ( Gershman et al., 2015; Hass-

bis et al., 2017; Helmstaedter, 2015; Macpherson et al., 2021; Richards

t al., 2019 ). In particular, machine learning is increasingly used both

o model and to classify brain data ( Yang and Wang, 2020 ), with appli-

ations ranging from cognitive and systems neuroscience ( Fong et al.,

018 ) to clinical brain imaging ( Buchlak et al., 2021; Myszczynska et al.,

020 ). As a result, machine learning is steadily turning into a fundamen-

al tool for neuroscientists ( Glaser et al., 2019 ). As is the case with all

ethodological frameworks, machine learning comes with a set of sub-

leties and pitfalls. Being aware of these limitations and knowing how

o handle them properly can be challenging, especially in research do-

ains where machine learning is not yet adequately and systematically

overed during training. The issue of data imbalance ( He and Garcia,

009; Sun et al., 2009 ) is a perfect example of an important problem

hat is generally well understood in the field of data science, but not al-

ays properly appreciated and tackled in neuroscience and neuroimag-

ng. This technical note provides (1) a didactic description of the pitfalls

ssociated with using skewed datasets in supervised machine learning,

2) a detailed assessment of the impact of varying the degree of class

mbalance on classifier models and their performance using synthetic

nd real data, (3) concrete recommendations for mitigating the adverse

ffects of imbalanced data, and (4) open-source code to replicate the

resent work and extend it to other methods and metrics. 

In binary classification problems, data imbalance occurs whenever

he number of observations from one class (majority class) is higher than

he number of observations from the other class (minority class)( He and

arcia, 2009; Sun et al., 2009 ). This problem is commonly encountered

n cognitive neuroscience and in clinical applications, where observa-

ions for the target class (e.g. patients with neurological disorders) are

ften much harder to come by than for the control class (e.g. cognitively

ealthy individuals), leading to datasets with many more control obser-

ations than target observations ( Krawczyk, 2016; Sun et al., 2009 ).

dditional care has to be taken when evaluating the performance of

iagnostic tests on rare conditions ( Varoquaux and Colliot, 2022 ). 

What makes imbalanced data problematic? When faced with highly

kewed data, a classifier can achieve a high decoding accuracy merely

y systematically and blindly voting for the majority class ( Sun et al.,

009 ). For example, if an image classifier is asked to discriminate pic-

ures of crows versus ravens, but only one out of twenty images in the

raining and test sets are ravens and the rest are crows, then the algo-

ithm can (and likely will) achieve 95% accuracy simply by calling ev-

rything it sees a crow —though no discrimination or classification can

ightly said to have been accomplished. In other words, given the op-

ortunity, an algorithm will tend to bypass more complex feature anal-

sis simply by ”playing the odds ”, which is indistinguishable from ac-

ual classification when only focusing on e.g. Accuracy as a performance

etric. 

The most common approach to avoid this problem is to enforce bal-

nced data. One way to do this is by undersampling, i.e. by removing

bservations from the majority class until a balance is reached ( Chawla

t al., 2004; Liu et al., 2008 ), and repeating the process through boot-

trapping. However, this comes at the cost of reducing the sample size,

ncreasing the signal-to-noise ratio, which can be detrimental to the clas-

ification. Alternatively, one can oversample the minority class by du-

licating or interpolating observations ( Chawla et al., 2002; Fernández

t al., 2018; Graa and Rekik, 2019 ) ( Fig. 1 a), though this comes with a

igher risk of overfitting and introducing noise ( Tan et al., 2007 ). 

It may also be possible to dispense with undersampling or oversam-

ling, and the problems they create, and to cope with the imbalanced

ata. In this case however, a number of additional considerations are

ecessary to avoid spurious results ( Haixiang et al., 2017 ). These include
2 
he judicious choice of the type of classifier and the performance metric

o be used. Additionally, when deploying a model validation scheme,

pecial care must be taken to reflect the imbalance in the main data,

uch as by using Stratified K-Fold cross-validation ( Fig. 1 b). While these

est practices are commonly applied in the machine learning commu-

ity, they are not as widely adopted by the neuroscience and neuroimag-

ng fields, likely due to the little information that exists, targeting neu-

oscientists, on how each of these different factors interact with data

mbalance in a neuroscience context. Nevertheless, the importance of

onsidering class imbalance has been highlighted in several brain de-

oding studies, and appropriate metrics have been made available in

ome toolboxes ( Bode et al., 2019; Fahrenfort et al., 2018; Pereira et al.,

009 ). Recommended metrics include the Area Under the Curve (AUC)

f the Receiver Operating Characteristic (ROC), d-prime (a metric re-

ated to ROC-AUC, commonly used in psychology) ( Das and Geisler,

021; Hebart et al., 2015 ), balanced accuracy ( Grootswagers et al.,

017 ) and tuned loss functions ( Lemm et al., 2011 ). Yet, a dedicated

ccount and systematic quantification of the effect of data imbalance

or the neuroscience community is still missing. In particular, it is use-

ul to have a didactic assessment of the impact of data imbalance (using

oth synthetic and real data) across varying degrees of imbalance, types

f classifiers, hyperparameter choices, training, cross-validation and sig-

ificance testing schemes. In this paper, we aim to provide a straightfor-

ard and practical demonstration of this multifaceted problem by us-

ng simulated data, as well as real-world electrophysiological and fMRI

ecordings. More specifically, we examine the behavior of four promi-

ent metrics (Accuracy (Acc), Area Under the ROC Curve (AUC), Bal-

nced Accuracy (BAcc) ( Brodersen et al., 2010a; Kelleher et al., 2015 ),

nd F1; Table 1 ) across four widely-used classifiers (Logistic Regression

LR) ( Cox, 1958 ), Linear Discriminant Analysis (LDA) ( Fukunaga, 1993 ),

upport Vector Machine (SVM) ( Cortes and Vapnik, 1995 ), and Random

orest (RF) ( Breiman, 2001 )), as we gradually increment data imbal-

nce. 

The topic of data imbalance, also often referred to as class or domain

mbalance, has been addressed in previous work and online resources

 Haixiang et al., 2017; Sun et al., 2009 ), primarily within the computer

cience community. Here, we tailor our examples, explanations and rec-

mmendations, as well as our open-source code, to the neuroscience

esearcher or trainee with an interest in applying machine learning to

euroimaging data. 

. Methods and materials 

To explore the effect of data imbalance on different classification al-

orithms and performance metrics, we developed a custom open-source

nalysis pipeline, which systematically manipulates class imbalance

 Fig. 1 c). We herein first describe the analysis pipeline and secondary

nalysis, and then describe the five datasets used in this study (i.e. three

ypes of simulated data, one EEG dataset, and one MEG dataset). 

.1. Synthetic data 

To evaluate the impact of class imbalance in a controlled environ-

ent we generated synthetic data, consisting of 1000 random sam-

les (at perfect balance) from two Gaussian distributions. We explored

hree different scenarios by modifying the amount of overlap between

he two distributions, i.e. changing the distance between the means

1 and 𝜇2 of the two distributions, while keeping the standard devia-

ion 𝜎1 and 𝜎2 constant at 1. In the first scenario, both classes came

rom the same distributions ( |𝜇0 − 𝜇1 | = 0 ; Fig. 2 a) and are therefore im-

ossible to classify. In the second scenario, the two distributions were

ostly overlapping ( |𝜇0 − 𝜇1 | = 1 ; Fig. 2 f), simulating a hard classifica-

ion task. In the third scenario, the two distributions had a minimal over-

ap ( |𝜇0 − 𝜇1 | = 3 ; Fig. 2 k), which illustrates an easy classification task. 

Note that this dataset serves a didactic purpose only, as we limit the

imulated data to a single feature. While oftentimes one has to deal with
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Fig. 1. a) Methods to balance imbalanced data in order to avoid biases in machine learning. In undersampling (left), a subset of the overrepresented group (dataset 

A) is chosen. In oversampling (right), samples from the underrepresented group (dataset B) are duplicated or artificially augmented. b) Illustration of Stratified 

K-Fold cross validation (K = 5). Instead of randomly choosing subsamples for every fold, this technique maintains the balance of the original data over all folds. This 

technique helps reduce biases and large variance in cross-validation. c) Illustration of the overall analysis framework of experiments performed in this paper. Various 

degrees of class imbalance were manually generated by undersampling the data. For a set of sample sizes, we performed binary classification using four widely used 

algorithms, three K-fold cross-validation methods, and four evaluation metrics (Acc, AUC, BAcc, and F1). 
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ultiple features, this example illustrates the problem at hand in a sim-

listic way and makes the concepts easy to grasp. We further extend our

nalysis to real-world examples using multiple features ( Section 2.4 ). 

.2. Primary analysis pipeline 

The analysis pipeline was developed specifically for binary classifi-

ation problems. Its primary purpose is to generate scores for different

etrics across a range of imbalance ratios, using a list of classifiers and

ross-validation schemes ( Fig. 1 c). 

In order to estimate the chance level of correct classification, given

he configuration of dataset and performance metric, the pipeline per-

orms permutation tests ( Ojala and Garriga, 2010 ) (repeatedly train-

ng and evaluating a classifier on the same dataset but with randomly

ermuted labels). Generating data-driven chance level is necessary be-

ause the theoretical binary classification chance level of 0.5 could

e incorrect when performing binary classification on a dataset which

as imbalanced classes or a small sample size. Furthermore, differ-

nt performance metrics can lead to different estimates of the chance

evel. 
Table 1 

Overview of evaluation metrics. True positives (TP): instances that are po

that are negatives and are classified as positives. False negative (FN): insta

(TN): instances that are negatives and are classified as negatives. PPV, Po

Metric Definition 

Precision/ PPV Correct positive predictions divided by all positive predic

Recall/ Sensitivity Correct positive predictions divided by all positive sampl

Specificity Correct negative predictions divided by all negative samp

NPV Correct negative predictions divided by all negative pred

F1 score The harmonic mean of precision and recall. 

Accuracy Proportion of correct predictions among all samples. 

Balanced Accuracy Mean of recall and specificity, i.e. average per-class accu

AUC Area Under ROC Curve, which plots true positive against

3 
In addition to that, we repeated the experiments 10 times with dif-

erent random seeds to estimate the degree of variance across cross-

alidation splits. We generally report the mean performance across the

0 repetitions and indicate the standard deviation as a shaded area

round the mean. 

To assess the impact of the metric with which classifiers are

valuated, we explored a range of classification metrics. These

nclude Accuracy (Acc) ( Luque et al., 2019 ), Balanced Accuracy

BAcc) ( Brodersen et al., 2010b ), Area Under the ROC Curve (AUC)

 Gong, 2021 ), and F1 ( Wang et al., 2017 ). We made sure to include the

ost frequently used metrics, as well as variations specifically designed

o tackle evaluation of prediction on imbalanced data. See Table 1 for

n overview of classification metrics. It is interesting to note here that

he Area under the Curve (AUC) of the Receiver Operating Character-

stic (ROC) measures the integral of true positive rate against the false

ositive rate across all decision thresholds. This means that AUC is in-

ariant to modifying the decision threshold, which is sometimes used to

ombat the influence of class imbalance. 

In terms of classifiers, we included Logistic Regression (LR)

 Cox, 1958 ), Linear Discriminant Analysis (LDA) ( Fukunaga, 1993 ), Sup-
sitives and are classified as positives. False positive (FP): instances 

nces that are positives and are classified as negatives. True negatives 

sitive Predictive Value. NPV, Negative Predictive Value. 

Formula 

tions. 𝑇𝑃 

𝑇𝑃+ 𝐹𝑃 

es. 𝑇𝑃 

𝑇𝑃+ 𝐹𝑁 

les. 𝑇𝑁 

𝑇𝑁+ 𝐹𝑃 

ictions. 𝑇𝑁 

𝑇𝑁+ 𝐹𝑁 

2 ⋅ Precision ⋅Recall 
Precision + Recall 
𝑇 𝑃+ 𝑇 𝑁 

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁+ 𝐹𝑁 

racy. 0 . 5 ⋅ ( 𝑇𝑃 

𝑇𝑃+ 𝐹𝑁 
+ 𝑇𝑁 

𝑇𝑁+ 𝐹𝑃 
) 

 false positive rate for all decision thresholds. ∫ 1 
0 ROC 
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ort Vector Machine (SVM) ( Cortes and Vapnik, 1995 ), and Random

orest (RF) ( Breiman, 2001 ). We chose these models because they are

mong the most widely used in the neuroscience community, and be-

ause they represent a variety of approaches. The SVM was used with

 radial basis function (RBF) kernel, making it a powerful non-linear

lassification algorithm. In addition we also assessed the impact of class

mbalance on the commonly used linear SVM classifier (see Supplemen-

ary Fig. 2). RF was of specific interest as it is a tree-based ensemble

odel expected to be better at handling class imbalance than the other

ethods. 

We essentially used the default hyperparameters as defined in the

cikit-learn library ( Pedregosa et al., 2011 ), however, we reduced the

umber of Random Forest estimators from 100 to 25 to better suit the

ow number of features in our experiments. Moreover, computing AUC

equires predicting a continuous classification score for each sample.

hile LR, LDA and RF provide probability predictions out of the box,

VM supports two ways of estimating these prediction scores: proba-

ility calibration through an internal cross-validation on the training

et, or using the signed distance from the fitted hyperplane. We found

o substantial difference between both techniques and used the prob-

bility calibration method throughout the analysis. Note that AUC and

alanced Accuracy would be equivalent if we used binary predictions

nstead of class probabilities. 

Cross-validation was performed using the Stratified K-fold or Strat-

fied Group K-fold strategy (5 folds), depending on the presence or ab-

ence of group/subject information in the data. In a typical data-driven

euroscience decoding task, group labels help separate data from dif-

erent subjects and add a measure of generalisation performance to new

ubjects to the evaluation process. 

To simulate different amounts of imbalance in the class distribution

e artificially limited the number of samples for both classes separately.

e used a range of imbalance ratios from 0.1 (9:1 balance between the

wo classes) to 0.9 (1:9 balance) with 25 linearly spaced intermediate

atios, which provided a good trade-off between speed and performance.

or a dataset with 100 data points (50 in either class), for example, we

an experiments with the following class distributions: 50:5, 50:7, ...,

0:50, ..., 7:50, 5:50. Imbalance was achieved by undersampling (drop-

ing samples) either one of the two classes. It is important to note here

hat the sample size used to fit the classifiers decreased with increas-

ng levels of imbalance. This limitation comes in part from the limited

mount of data in our EEG and MEG analysis. We investigated the effect

f sample size on our analysis in later stages of analysis, ensuring that

t does not interfere with our results. 

.3. Secondary analysis 

Additionally, we explored the effect of data imbalance as a function

f 1) the selection of hyperparameters, 2) the size of the dataset, 3) the

ype of cross-validation, 4) the effect of a balanced hold-out test set and

) the impact of class imbalance on statistical significance testing. To

implify our approach, we only performed analysis 2–5 using SVM with

n RBF kernel and evaluated it using Acc. We chose SVM specifically

ecause we expected this algorithm to display important effects of class

mbalance on performance. 

.3.1. Effect of hyperparameters 

To assess the putative effect of hyperparameters, we explored those

hat are expected to have a significant impact on the robustness of clas-

ifiers with respect to imbalanced data ( Zhu et al., 2018 ). We used syn-

hetic data ( Section 2.1 ) with 1000 samples (at perfect balance) and a

istance of one between the two Gaussian distributions and evaluated

he effect of the selected hyperparameters using Balanced Accuracy. This

llows us to track improvements in robustness, which would manifest

s a flatter curve of classification scores across imbalance ratios. 

We limited this experiment to hyperparameters implemented in

cikit-learn as this is one of the most commonly used libraries. Logis-
4 
ic Regression, SVM, and Random Forest all implement an automatic

lass-weighting algorithm to deal with imbalanced data, which can be

nabled by setting the class_weight parameter to balanced . This approach

eights the influence of each sample according to the inverse frequency

f the corresponding class, thereby decreasing the impact of the major-

ty class. This class-weighting technique, also known as cost-sensitive

earning, penalizes the model less for errors made on examples from

he majority class and more for errors made on the minority class. The

andom Forest additionally has a balanced_subsample option, which ap-

lies the same weighting on the level of individual trees instead of

lobally for the full model. In addition to class weighting, we explored

hanging the minimum size of leaf nodes as a fraction of all samples

 min_weight_fraction_leaf ). As the fractional size of the leaf nodes depends

n class distribution a large enough value ensures that leaf nodes will

e more representative of differences between classes instead of simply

oting for the majority class. We explored values of 0.1 and 0.4 for this

arameter, serving as examples for weak and strong regularization. 

While these hyperparameter optimization strategies are readily

vailable for LR, SVM and RF in their respective scikit-learn implemen-

ations, tackling class imbalance by changing model parameters in the

ase of LDA is less straightforward. One simple strategy would be to

odify the intercept of the decision hyperplane according to the rate of

lass imbalance. While this can be achieved through the priors hyper-

arameter in scikit-learn, exploration of this hyperparameter in more

etail goes beyond the scope of this article. More generally, while hy-

erparameter optimization is not done systematically in brain decoding

ork, it is likely to become more common as ML continues to be increas-

ngly used in neuroscience. Hence, understanding its impact on the issue

f class imbalance could become increasingly relevant. 

.3.2. Effect of sample size 

To test the impact of dataset size on robustness to imbalance we

valuated classifier performance across imbalance ratios using synthetic

ata with sample sizes N = 300, N = 1000 and N = 3000 before undersam-

ling. The data of the two classes was sampled from two Gaussian dis-

ributions with a distance of one ( Section 2.1 ). This experiment further

llows us to shed light on the issue of decreasing sample size with in-

reasing levels of class imbalance, which results from the technique we

sed to generate imbalanced datasets. 

.3.3. Effect of cross-Validation 

In order to assess the influence of the cross-validation scheme on

ifferent metrics when using imbalanced data, we tested K-Fold and

tratified K-Fold cross-validation on synthetic data. This difference will

ikely appear on smaller sample size since lower sample sizes increase

he likeliness of having one class absent from a fold when using K-Fold

ithout stratification. 

To assess the impact of the choice of cross-validation approach, we

rained an SVM classifier on the synthetic data with a distance of one

etween the means of both distributions ( Section 2.1 ) and chose to only

se 50 samples per class before unbalancing. This analysis was repeated

ith 40 different seeds in order to assess the robustness of the effects

e hypothesise. 

.3.4. Effect of balanced hold-out set 

While so far all cross-validation splits came from the training data

istribution, thereby replicating class imbalance, we also decided to ex-

lore the effects of training on an imbalanced dataset and performing

alidation on a balanced subset. Here, we trained an SVM on 1000 sam-

les (at perfect balance) of synthetic data ( Section 2.1 ) with a distance

f one between the means of both classes. The balanced hold-out set

as created by taking a 10% split of the full dataset before artificially

enerating an imbalanced training set. This analysis aims at uncovering

 potential performance bias when the train and test set have different

lass distribution, i.e. imbalanced and balanced respectively. Note that

n this case, the Balanced Accuracy and Accuracy metrics are strictly
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quivalent as we are evaluating performance on a balanced hold-out

et. We therefore only report accuracy. 

.3.5. Significance testing on imbalanced data 

We additionally evaluated the statistical significance of classifica-

ion metrics across a range of imbalance ratios. Significance was com-

uted from permutation tests with 100 permutations at p < 0.01, using

n SVM trained on 1000 samples (at perfect balance) of synthetic data

ith different amounts of overlap between classes, namely: identical dis-

ributions (impossible classification problem), a distance of 1 between

he means of the class distributions (difficult classification problem)

nd a distance of 3 between the two classes (easy classification prob-

em)( Ojala and Garriga, 2010 ). 

.4. Brain data 

To extend the analysis from a controlled environment with synthetic

ata towards a realistic setting with neuroimaging datasets, we ran ex-

eriments on publicly available EEG, MEG and fMRI datasets. 

.4.1. EEG – Motor Movement/Imagery Dataset 

The publicly available EEG Motor Movement/Imagery Dataset

 Goldberger et al., 2000; Schalk et al., 2004 ) consists of 64-channel

EG recordings of 109 subjects at 160Hz. While the dataset contains

everal tasks related to motor movement, only baseline resting-state

uns were used, in this way creating a binary classification task between

he eyes-open and eyes-closed conditions. Each recording has 1 minute

f resting-state data which was segmented into 5-seconds epochs. As a

esult, 24 epochs per subject were extracted, half of them being eyes-

losed and the others eyes-open. The effect of these conditions on neural

scillations is well studied, and consists of an increase in alpha power

8-12Hz) in posterior regions of the brain during eyes closed ( Adrian

nd Matthews, 1934; Barry et al., 2007 ), compared to the eyes open

ondition. We computed alpha power (8-12Hz) from the power spectral

ensity (PSD) obtained using the multi-taper method. To restrict the fea-

ures to the visual cortex, only parieto-occipital electrodes (17 out of the

4) were used. The total sample size of this dataset was 109 subjects ×
 conditions × 12 trials = 2616 samples at perfect balance. 

A second analysis was carried out on this dataset to study the re-

ationship between electrode locations and performance scores along

 different imbalance ratios (0.1, 0.5 and 0.9). As topographic differ-

nces are the main focus of this experiment, the sensors were not con-

trained to be from parieto-occipital regions. Similarly, placing the em-

hasis on performance as a function of spatial location, single-channel,

ingle-feature SVM classifiers were trained (in contrast to multi-feature

lassification in the previous analysis). The motivation behind this anal-

sis is to tentatively illustrate that with increasing class imbalance, clas-

ifiers loose focus on the areas whose data best discriminate the classes,

nd merely predict the majority class. 

.4.2. MEG – Cam-CAN Dataset 

We used the passive auditory/visual perception task out of the open

ccess MEG dataset collected at the Cambridge Centre for Ageing and

euroscience (Cam-CAN) ( Shafto et al., 2014 ). The preprocessing steps

or this dataset can be found in Taylor et al. (2017) . The task consists

f 2-min recordings during which subjects were presented with either

isual checkerboards or auditory tones (in random order) 60 times each,

ith a second between each stimulus. We further processed the data by

own-sampling to 500Hz and epoching into 800-millisecond trials with

50 milliseconds of signal before stimulus onset and 650 milliseconds af-

er. The epochs were baseline-corrected before computing alpha power

12-30Hz) using the multi-taper method on the 650 milliseconds after

nset. We excluded the magnetometers and averaged powers for the two

radiometers for each location. For this study, we randomly selected 20

ubjects out of the 643 that are available in the repository, resulting in

 sample size of 20 subjects × 60 stimuli × 2 stimulus types = 2400
5 
amples at perfect balance. Classification was performed on the data of

 single channel ( Fig. 5 b), which was selected by training separate clas-

ifiers for all channels and selecting the location with best performance.

.4.3. fMRI – Haxby dataset 

Extending the analysis to functional MRI, we chose to use the pub-

icly available Haxby dataset ( Haxby et al., 2001 ) as provided through

he nilearn package ( Abraham et al., 2014 ). Here we only explored

ecordings from subject 1 in a whole-brain voxel-wise classification

aradigm. This allowed us to explore class imbalance in very high-

imensional feature spaces (39912 voxels). This dataset contains record-

ngs of BOLD activity from individuals viewing images from different

bject categories. Stimuli were presented for 500ms with inter-stimulus

ntervals of 1500ms as part of a one-back repetition detection task. Here

e trained four classifiers to predict the viewed object category from

oxel-wise BOLD activity, limiting the object categories to faces and

ouses in order to have a binary classification task. This resulted in a

ample size of 108 faces + 108 houses = 216. Furthermore, this analysis

erves as an example of within-subject classification as compared to the

ulti-subject setting in the previous tasks. 

.5. Data and code availability 

The scripts, notebooks and pipeline used in this study are open-

ource under the MIT licence. The code is available on GitHub for

urther explorations. Our experiment pipeline is not limited to the

atasets explored in this study and can easily be used to explore other

atasets. The open-source repository can be found at: https://github.

om/thecocolab/data-imbalance . 

The code was developed using Python and its rich ecosystem for

cientific computing. To process brain data we used MNE-Python

 Gramfort et al., 2013 ), and machine learning algorithms and metrics

ame from scikit-learn ( Pedregosa et al., 2011 ). Visualization was done

ith matplotlib ( Hunter, 2007 ) and seaborn ( Waskom, 2021 ). 

The synthetic data used in this study can be generated us-

ng the open-source code we provide. The EEG Motor Move-

ent/Imagery Dataset is publicly available and can be downloaded

ere: https://physionet.org/content/eegmmidb/1.0.0/ . The Cam-CAN

ataset can be accessed upon request at https://camcan-archive.mrc-

bu.cam.ac.uk/dataaccess/ and the pipeline for preprocessing and load-

ng the data is available at https://github.com/arthurdehgan/camcan . 

. Results 

It is important to note here that it is not possible to compare abso-

ute scores of metrics to one another. While for example AUC scores are

enerally higher than BAcc scores, this does not mean that the classifier

erforms better when using AUC. The performance metric does not in-

uence the classifier’s behavior. In fact, we used the same fitted instance

f a classifier to evaluate all performance metrics. The only exception

ere is that Acc and BAcc are mathematically equivalent in the case of

erfectly balanced data. In the following we focus mostly on the shape

f the graph across imbalance ratios in order to compare performance

etrics. 

.1. Simulated data 

To demonstrate the effect of data imbalance on different perfor-

ance metrics, algorithms and cross-validation techniques, we simu-

ated three binary-class datasets, as described in subsection 2.1 and

ig. 2 a, f, k. 

.1.1. Impossible classification 

In the first scenario, the binary classification was performed on data

rom the same distribution ( Fig. 2 a-e), representing an impossible clas-

ification task. Due to the nature of the data, we expected performance

https://github.com/thecocolab/data-imbalance
https://physionet.org/content/eegmmidb/1.0.0/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://github.com/arthurdehgan/camcan
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Fig. 2. Effect of data imbalance on different performance met- 

rics and algorithms using simulated data. This figure summa- 

rizes results from three different synthetic datasets (see class 

distributions in the first row): column 1 (a-e) : impossible clas- 

sification task, all data comes from the same distribution, col- 

umn 2 (f-j) : strongly overlapping class distributions and col- 

umn 3 (k-o) : slightly overlapping class distributions. Rows 2 

to 4 correspond to the different classification algorithms: Lo- 

gistic Regression (b,g,l) , Linear Discriminant Analysis (c,h,m) , 

Support Vector Machine (d,i,n) and Random Forest (e,j,o) . We 

evaluated Accuracy (blue), AUC (orange), F1 score (green), and 

BAcc (red). Solid lines show the performance over different 

class imbalance ratios, averaged over 10 initializations. Col- 

ored areas represent the respective standard deviation. Dashed 

lines indicate the average performance over 100 random per- 

mutations (i.e. chance level) for every performance metric. 

(For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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alues to stay at the chance level, which we estimated using random per-

utations ( Section 2.2 ). This hypothesis was confirmed by our results,

ith all performance metrics staying close to their respective chance

evel (not the probabilistic chance level of 0.5; it varies as a function

f data imbalance and metric etc.) and showing only minimal variation

cross repetitions. We herein first describe the effect of different perfor-

ance metrics and then describe the difference between classification

lgorithms. AUC and BAcc showed identical behavior, staying consis-

ently at a chance level of 0.5 across all levels of class imbalance. In

ontrast, Accuracy scores and the respective chance level increased to-

ards both extremes of data imbalance and reached minimal values at

he point of perfect data balance. More specifically, the Accuracy score

onsistently reflected the proportion of the majority class in the imbal-

nced data (i.e. reaching a score of 90% for imbalance ratios of 9:1

nd 1:9). The F1 score exhibited a steep increase from 0 towards 1 at

he point where the data was balanced and continuously approached 1

ith further increasing data imbalance. 
6 
Conspicuously, while Acc, AUC and BAcc show a symmetric pattern

owards undersampling either class, the F1 score approaches 0 for in-

reased undersampling of one class and 1 for the other. This behav-

or stems from F1 defining one class as positive and the other as neg-

tive, while the other evaluated metrics do not differentiate between

he classes. F1 is a combined measure of the fraction of true positives

mong positive predictions (precision) and true positives among posi-

ive samples (recall). If the majority of samples are in the positive class,

 classifier which always predicts the positive class will have precision

nd recall scores close to 1 and therefore high F1. On the other hand, an

verrepresented negative class easily causes classifiers to always predict

negative ”, resulting in an F1 score of 0. See Siblini et al. (2020) for a

ersion of F1 adapted to imbalanced data. 

It is noteworthy that the behavior of all above-described metrics was

ost similar between LR, LDA, and SVM (linear and RBF kernel), but

aried in RF. Compared to the other algorithms, accuracy using RF ex-

ibited a slower increase towards the extreme imbalance and stayed
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loser to 50% (i.e. the expected Accuracy score for classification be-

ween two datasets drawn from the same distribution) for a larger range

f data imbalance ratios. In contrast to the steep increase of F1 described

bove, the F1 score in RF increased linearly over all levels of imbalance

 Fig. 2 b-e). 

.1.2. Difficult classification 

In the second scenario, binary classification was performed on data

rom two overlapping Gaussian distributions with a distance of one

 Fig. 2 f), representing a difficult classification task. Due to the nature

f this dataset we expected performance scores to reach above chance

evel. Over all levels of data imbalance, AUC remained consistent and

bove chance level in LR and LDA. Only in SVM and RF did the AUC de-

rease to chance level on both ends of increased data imbalance, with the

trongest decrease in SVM. Accuracy exhibited a similar behavior over

ll four classification algorithms. Similarly to the first scenario, the Ac-

uracy scores reached maximal scores on both ends of data imbalance.

espite the decrease of Acc towards the point of maximally balanced

ata, the distance between Acc and its chance level was increasing. The

aximum distance between Acc and corresponding chance level was

eached at the point of perfect class balance, indicating that the clas-

ifier was best at learning the structure in the dataset at this point. In

ontrast to Acc, BAcc reached its maximum at maximal data balance

nd dropped to chance level, i.e. 50%, at both ends of class imbalance.

gain, the RF showed more stable BAcc scores over the range of class

mbalance. The F1 score successively increased from 0 to 1 and showed

imilar but dampened behavior compared to the results from the identi-

al class distributions ( Fig. 2 g-j). Results of the linear SVM model (Supp.

ig. 2) were similar to results of the SVM with RBF kernel. The only dif-

erence was in AUC, where we saw a flatter score around the balanced

ata regime. 
ig. 3. These examples follow the same principle as previous analysis (Fig 2 ), expan

obustness to imbalance. (a-c) Exploration of the effect of hyperparameters on classifi

etting ( Section 2.3.1 ) d) The effect of sample size on robustness to class imbalance u

o class imbalance (BAcc and SVM). f) Performance metrics on a balanced hold-out se

s it is equivalent to Acc for balanced data. Solid lines show the performance over d

epresent the respective standard deviation. 

7 
.1.3. Easy classification 

In the third scenario, binary classification was performed on data

rom two Gaussian distributions with a distance of 3 ( Fig. 2 k), which

s an example of an easy classification task. Due to the nature of the

ata, we expected performance values to reach high levels and to be

ess influenced by data imbalance. As expected, all performance metrics

eached good classification scores which were less sensitive to data im-

alance. While the general behavior was similar to the ones observed in

he two previous experiments, the classifiers did a better job of learning

tructure from the data even in cases of imbalanced classes ( Fig. 2 l-o). 

.2. Secondary analysis 

.2.1. Hyperparameter tuning 

We explored the effect on robustness when tuning hyperparame-

ers related to class imbalance of LR, SVM and RF. However, we only

ound improved robustness towards imbalance for LR by weighting sam-

les inversely proportional to class frequency. While enabling this re-

eighting scheme led to a stable BAcc score across imbalance ratios

or LR ( Fig. 3 a), SVM, and RF remained vulnerable to class imbalance

 Fig. 3 b, c). We examined a second hyperparameter for the Random

orest, namely the minimum weight fraction (MWFL) to generate a leaf

ode ( Fig. 3 c). Increasing this hyperparameter beyond its default value

f zero led to a general improvement in BAcc (over the default hyper-

arameter set) for balanced data, and a decrease towards regions of

xtreme class imbalance. Therefore, we are not able to report improve-

ents in robustness from this hyperparameter for the Random Forest. 

.2.2. Sample size 

We did not find any notable effect of sample size (N = 300, N = 1000,

 = 3000) on overall SVM classification accuracy nor robustness to class
ding on the effect of secondary parameters and hyperparameter tuning on the 

er robustness against imbalance. Each line represents a certain hyperparameter 

sing an SVM and Acc. e) The impact of cross-validation scheme on robustness 

t using an SVM trained on different ratios of imbalance. BAcc is not shown here 

ifferent class imbalance ratios, averaged over 10 initializations. Colored areas 
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Fig. 4. Effect of data imbalance on different performance metrics and algorithms for EEG data classification. a) 2D projection of the 17-dimensional input space 

using the UMAP algorithm ( McInnes et al., 2018 ). Each dot represents one sample mapped onto two UMAP components (x- and y-axis). This illustrates the amount 

of overlap (related to classification difficulty) between the eyes closed (blue) and eyes open (orange) classes. b) The parieto-occipital region of interest (ROI) was 

used as features. The effect of data imbalance using c) Logistic Regression; d) Support Vector Machine; e) Linear Discriminant Analysis, and f) Random Forest. 

We evaluated Accuracy (blue), AUC (orange), F1 score (green), and BAcc (red). Solid lines indicate performance across imbalance ratios averaged over 10 random 

initializations. Colored areas represent the respective standard deviation. Dotted lines indicate the average score across 100 random permutations of class labels (i.e. 

data-driven chance level). Subfigures g-j highlight the effect between data imbalance and sensor location across performance metrics for single-channel, single-feature 

classification between eyes-open and eyes-closed EEG using an SVM. IR indicates the imbalance ratio used for each topographical map. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

8 
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mbalance. However, as one would expect, the variance across random

nitializations of the cross-validation splits decreased with the number

f training samples ( Fig. 3 d). This result validates our procedure of un-

ersampling to achieve class imbalance, which leads to a decrease in

ample size towards higher degrees of imbalance. As here we show that

 change in sample size only affects the variance of the results, the shape

f the performance curves can be compared across imbalance ratios. 

.2.3. Cross-Validation 

Comparing different cross-validation algorithms revealed that K-Fold

s more sensitive to imbalanced data than Stratified K-Fold ( Fig. 3 e).

hile both procedures led to similar Balanced Accuracy scores with bal-

nced classes, K-Fold cross-validation without stratification showed an

ncrease in Balanced Accuracy towards extremely imbalanced datasets.

his likely stems from validation splits containing only a single class,

hich Balanced Accuracy does not account for. While a classifier voting

or the majority class has a Balanced Accuracy of 0.5 on data containing

wo classes, its score will be 1 on validation splits that, by chance, only

ontain one class. The likelihood of this is higher for low sample sizes

nd is completely resolved by using Stratified K-Fold cross-validation. 

.2.4. Balanced hold-out set 

So far, all experiments were evaluated using cross-validation with

mbalanced validation splits, replicating the class distribution of the

raining set. Fig. 3 f shows SVM classification scores on a balanced hold-

ut set after being trained on increasingly more imbalanced training

ata. While AUC and F1 scores are largely in line with previous results

 Fig. 2 i) using imbalanced cross-validation splits, Acc now reflects the
ig. 5. Effect of data imbalance on different performance metrics and algorithms 

egression; b) Random Forest; c) Linear Discriminant Analysis; d) Support Vector M

Acc (red). Solid lines indicate the performance over different class imbalances, ave

eviation. Dotted lines indicate the performance of 100 random permutations (i.e. ch

o colour in this figure legend, the reader is referred to the web version of this article

9 
revious behavior of BAcc, i.e. dropping towards the random baseline

f 50% towards the extremes of class imbalance. Note that we do not

eport BAcc here as it is equivalent to Acc on balanced data. 

.2.5. Significance testing on imbalanced data 

Supplementary Fig. 1 depicts significance scores across imbalance

atios and levels of difficulty of the classification problem. Generally we

ound that for the impossible classification task (i.e. identical class dis-

ributions; Supp. Fig. 1a), none of the scores were significant at p < 0.01,

s in this case, permuting labels does not remove any structure from the

ata. For the difficult classification task b), however, we found a range

f statistically significant classification scores around perfect class bal-

nce. Scores were not significant towards the extremes of class imbal-

nce. This behavior was shared among all the classification metrics we

valuated. In the third task —easy classification (Supp. Fig. 1c) —all clas-

ification scores were found to be significantly above chance level for all

etrics, which highlights the classifier’s ability to learn structure in the

ata even for extreme class imbalance, which is even more pronounced

or easier classification tasks. Note that the results in Supp. Fig. 1 dif-

er from the results presented in Fig. 2 d,i,n because — even though the

xperimental setup was the same — when testing for statistical signifi-

ance we are limited to a single repetition of the analysis, while results

n Fig. 2 are averaged over 10 random seeds. 

.3. Results on EEG data 

We performed two experiments using the EEG dataset with

lassification between eyes-open versus eyes-closed during resting
on classification of MEG data. The effect of class imbalance using a) Logistic 

achine. We evaluated Accuracy (blue), AUC (orange), F1 score (green), and 

raged over 10 initializations. Colored areas represent the respective standard 

ance level) for every performance metric. (For interpretation of the references 

.) 
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 Section 2.4.1 ). We herein first describe the results of the multi-feature

lassification using parieto-occipital electrodes and then present the re-

ults of the channel-wise classification. 

As previously shown in the simulated data, Acc increased with in-

reasing data imbalance, reflecting the proportion of the majority class.

n contrast to this, BAcc approached chance level with increased imbal-

nce and reached its maximum with maximally balanced data. In line

ith the simulated data, the F1 score increased abruptly at optimal class

alance. AUC was stable over a wide range of class imbalance. While

VM, LR, and LDA showed similar behavior (i.e. being equally sensitive

o data imbalance), the performance metrics using RF exhibited more

tability over different levels of imbalance ( Fig. 4 c-f). 

In contrast to multi-channel classification, single-channel decoding

erformance is commonly used to localize changes between two con-

itions and allows to attribute larger changes to channels with higher

ecoding performance ( Fig. 4 a, b). Here we show how class imbalance

ay lead to misinterpretation of such results and the loss of structure

elated to decoding performance. At optimal class balance, highest de-

oding performance was found in parieto-occipital regions of the brain,

hich is in line with the literature and allows for interpretation of the

esults ( Fig. 4 g-j, IR = 0.5). Towards the extremes of data imbalance,

his structure is lost and we find uniform decoding performance across

he brain. This effect is most prominent using Acc, BAcc, and F1, while

UC retains some variations across channels ( Fig. 4 g-j). 

.4. Results on MEG data 

As described in Section 2.4.2 , classification was performed between

uditory and visual stimuli, using all sensor locations as features and

veraged power across the two MEG gradiometers for each location.

ig. 5 shows the results of the multi-feature classification using different

odels. All models seem to perform similarly and have similar reaction

o imbalance with all of the studied performance metrics. The only no-

able difference in baseline chance level computations appears for the

VC classifier where F1 score raises sharply when reaching the balanced

ata ratio ( Fig. 5 ). In line with the simulated and EEG datasets, BAcc ap-

roached chance level with increased imbalance and reached its maxi-

um with perfectly balanced data. While AUC was stable across a wide

ange of imbalance ratios for LR, LDA, and RF, we observed comparable

ehavior to BAcc for SVM (i.e. approaching chance level towards more

ata imbalance). While SVM, LR, and LDA showed similar behavior (i.e.

eing equally sensitive to data imbalance), the performance metrics in

F exhibited slightly more stability over different levels of imbalance.

his is in line with the aforementioned results using the simulated and

EG datasets. 

.5. Results on fMRI data 

Fig. 6 shows the results of our analysis in a high-dimensional clas-

ification setting using whole-brain voxel-wise classification. In line

ith previous observations using the same dataset (cf. nilearn tutori-

ls ( Abraham et al., 2014 )), all tested classifiers performed extremely

ell in the balanced data condition often exceeding 95% decoding ac-

uracy. Importantly, the results we observed here with regards to the

ehavior of the four performance metrics across the classifiers are in

ine with the previous results. As expected from the classification task

face vs. house stimulus), the Logistic Regression weights peak in the

usiform face area (FFA), confirming that the high decoding accuracy

tems from meaningful learned representations ( Fig. 6 a). 

. Discussion 

The present work shows that the implementation of classification on

mbalanced data is feasible, though it demands certain important con-

iderations. Our approach demonstrates how one needs to be mindful of

lass imbalance when choosing a classifier, an evaluation metric and a
10 
ross-validation scheme ( Krawczyk, 2016 ). Here, we sought to provide

 didactic technical note on this question using a combination of simu-

ated data, electrophysiological brain signals and fMRI recordings. Con-

retely, we quantified the behavior of commonly used classifiers, per-

ormance metrics, and cross-validation approaches across varying levels

f data imbalance. An exhaustive exploration of all available techniques

hat have been proposed to tackle data imbalance is beyond the scope

f this study. Instead, we chose to focus on machine learning tools and

etrics that are often used within the neuroscience community. In line

ith this, the methods we address —and the open-source pipelines and

otebooks we provide —all use the scikit-learn library. 

Taken together, our observations support the idea that classification

n moderately imbalanced data is feasible, as long as appropriate clas-

ifiers and performance metrics are employed. More specifically, by sys-

ematically manipulating the degree of data imbalance, we illustrated

nd quantified several key effects. First, we confirmed the tendency of

lassifiers to resort to blindly voting for the majority class as data im-

alance was accentuated. When assessed with the widely used Accuracy

easure, this behavior was associated with an artificial improvement in

he model’s classification performance. AUC and BAcc were more robust

o the increase in imbalance, and are therefore more appropriate under

hese circumstances. Moreover, our data confirms that Random Forest is

ore robust when handling imbalanced data, compared to other com-

only used algorithms, such as LR, LDA, and SVM —especially when

sing class-weighting hyperparameter optimization. This result is ex-

ected, but our analyses quantify this for a wide range of imbalances

nd illustrates the effect with simulated data as well as EEG and MEG

ecordings. We also found that the balancing hyperparameter can be

sed to improve LR’s robustness to data imbalance. 

Our study also highlights an important caveat concerning the use

f permutation tests on imbalanced data. Permutation tests allow data-

riven computation of the chance level, and from this chance level, they

rovide an estimate of statistical significance. However, because chance

evels can be much greater than 50% in imbalanced data (for binary

lassification problems; Fig. 2 ,), a simple reporting in these cases of the

ccuracy and of its statistical significance can artificially inflate the im-

ortance of the classification result. For example, for a 0.2 imbalance

atio, a statistically significant Accuracy of 82% can appear to be an

utstanding result, when in reality, the chance level is 80%, so this is

rguably comparable in importance to a statistically significant Accu-

acy of 52%. This scenario underlines the importance of reporting the

hance level alongside performance metrics when carrying out permu-

ation testing on imbalanced data ( Combrisson and Jerbi, 2015 ). 

The present study complements a wide array of insightful investi-

ations that have explored the pitfalls and potential solutions for su-

ervised learning with imbalanced data ( Dubey et al., 2014; Graa and

ekik, 2019; Japkowicz and Stephen, 2002; Jeni et al., 2013; Kamalov

nd Denisov, 2020; Krawczyk, 2016; Prati et al., 2015; Straube and

rell, 2014; Sun et al., 2009; Tan et al., 2007; Thabtah et al., 2020;

aroquaux and Colliot, 2022; Wang et al., 2017; Wardhani et al., 2019 ).

y contrast to some of the previous studies, the present work focuses

n insights that are directly relevant to researchers in neuroimaging

sing standard tools, such as those available through the scikit-learn

ibrary. 

We would like to emphasize that while the examples provided here

epresent a specific instance of classification problems that can be en-

ountered in the field of neuroscience, our analysis serves as an illus-

rative placeholder for many types of problems including but not lim-

ted to within-subject or between-subject classification, low- or high-

imensional brain imaging data, or analysis of behavioral data. Im-

ortantly, we encourage the reader to follow the same procedure to

xplore the imbalance question in their own data. As a matter of

act, the code and Jupyter notebooks ( https://github.com/thecocolab/

ata-imbalance ) were designed so the figures could be easily replicable,

nd allow users to extend the investigations to a wider range of metrics

nd methods, in a collaborative and open science perspective. 

https://github.com/thecocolab/data-imbalance
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Fig. 6. Effect of data imbalance on different performance metrics, algorithms, and cross-validation techniques on classification of fMRI data. a) Illustration of 

Logistic Regression weights trained on classifying face and house stimuli. The effect of class imbalance using b) Logistic Regression; c) Linear Discriminant Analysis; 

d) Support Vector Machine; e) Random Forest. We evaluated Accuracy (blue), AUC (orange), F1 score (green), and BAcc (red). Solid lines indicate the performance 

over different class imbalances, averaged over 10 initializations. Colored areas represent the respective standard deviation. Dotted lines indicate the performance of 

100 random permutations (i.e. chance level) for every performance metric. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Recommendations In discussing recommendations and best prac-

ices for handling data imbalance, it is important to note that the util-

ty or suitability of a metric should always be determined in relation

o the specific problem being tackled. The various types of machine

earning problems differ among other things in the type of error one

eeks to minimize —this will in turn determine the appropriate classifi-

ation paradigm in which to operate. The suitable paradigm depends on

hether one’s aim is to minimize overall classification error ( Lee et al.,

021 ), type I error (false positive) ( Van De Ruit and Grey, 2019 ) or type

I error (false negative) ( Abdelhamid et al., 2020 ). Of these three, the

esign of the present study and the findings we report relate primar-

ly to paradigms seeking to minimize overall classification error. Our

nalysis confirms that BAcc (and the related AUC metric) are more ro-

ust to data imbalance than the common Accuracy metric. Note that

he Precision and Recall metrics are recommended when dealing with

ype I and type II errors respectively. Sampling techniques (i.e. over-

nd undersampling) are known to be helpful in most paradigms and

vidence suggests that they work well in combination with certain clas-

ifiers ( Feng et al., 2020 ). 
11 
Based on the observations reported in this study, evaluating the per-

ormance metrics on a balanced holdout set ( Fig. 3 f) allows for an unbi-

sed evaluation of classification performance even when using metrics

ulnerable to class imbalance, such as Acc. We therefore recommend

sing several evaluation metrics, e.g. BAcc, with Stratified K-Fold cross-

alidation and standard Accuracy on a balanced holdout set. As BAcc is

quivalent to Acc for balanced data, it retains Acc’s greatest advantage,

amely its intuitiveness and ease of interpretation. We additionally ar-

ue that BAcc results in more intuitive performance evaluation for im-

alanced data, as it combines performances of individual classes with

qual weight. Accuracy on the other hand combines class performances

ith a strong bias towards the majority class. 

Deep learning, an advanced type of machine learning used for a

arge variety of classification tasks, is not immune to data imbalance

 Buda et al., 2018 ). Deep learning models learn by backpropagating

radients through the model. In class-imbalanced scenarios, the major-

ty class dominates the net gradient that is responsible for updating the

odel’s weights, which reduces the error of the majority group quickly

uring early iterations. However, oftentimes it simultaneously increases
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he error of the minority group. As a result, the neural network strug-

les to learn the decision boundary for the problem ( Anand et al., 1993 ).

ommon approaches used to overcome data imbalance when training

eep neural networks include under-/oversampling, data augmentation,

he use of a class-weighted loss function (i.e. higher penalty for er-

ors made on the minority class) and output thresholding ( Johnson and

hoshgoftaar, 2019 ). 

Overall, given our results, we make the following seven recommen-

ations for machine learning in neuroscience: 

1. Know your problem. The right performance metric to use is deter-

mined first and foremost by the specific research question at hand.

Throughout this study, we have focused largely on the type of ques-

tion that requires a minimization of the overall classification error.

However, for some problems, it may be more important to priori-

tize the minimization of either type I or type II error. In these cases,

other performance metrics may be more relevant than BAcc or AUC,

namely Precision and Recall. For example, a classifier used to dis-

criminate biological sex based on brain activity would likely seek to

minimize overall classification error, and BAcc or AUC would then be

recommended to correct for any class imbalance in the data. In con-

trast, a classifier used to detect malignant tumours in brain imaging

would instead benefit most from Precision and Recall metrics, since

false negatives (type II error) would need to be minimized above

all else. Therefore, consideration of the nature of the problem at

hand —specifically, of the type of error to be minimized —is essen-

tial to selecting the most appropriate performance metric. With this

in mind, the remaining recommendations offered here apply specif-

ically to problems requiring the minimization of classification error.

2. Use Balanced Accurary (BAcc). BAcc has been largely underex-

ploited in neuroscience research. Given (i) its superior robustness to

imbalance, (ii) the fact that it simply reduces to Accuracy for bal-

anced datasets and (iii) its applicability to both binary and multi-

class ( Grandini et al., 2020 ) datasets, we recommend the routine

use of BAcc, rather than the commonly used Acc, as a default for

neuroscience machine learning applications where overall classifica-

tion error should be minimized. To maximize the interpretability of

classification results however, it is worth looking at multiple perfor-

mance metrics (e.g. BAcc and AUC). If the classifier is purely used to

decide if a feature captures a difference between two conditions (as

commonly done in the field of neuroscience), AUC combined with

significance testing serves as a powerful tool. 

3. Use ensemble methods. If data imbalance cannot be avoided, we

recommend the use of classifier families that provide additional ro-

bustness. In line with previous recommendations, ensemble methods

such as Random Forests are less sensitive to data imbalance and pro-

vide a set of hyperparameters that can be optimized for the classifi-

cation of imbalanced data. Further, ensemble methods are generally

known to improve robustness ( Dietterich, 2000; Sagi and Rokach,

2018 ). However, the complexity of some of these algorithms might

not fit well onto very simple classification tasks, which may affect

the robustness. 

4. Use a balanced hold-out test set. When working with imbalanced

data, the true overall classification error of the trained classifier can

be assessed simply by testing it on a balanced hold-out test set. How-

ever, we further suggest also evaluating classifier performance on a

test set that reflects the class distribution of the specific problem in

the wild (or of the training set, if the class distribution in the real-life

setting cannot be estimated). The difference in score between these

two test sets can additionally help interpret the performance of the

classifier. Beyond that, analysing confusion matrices and their de-

rived metrics helps with understanding the behavior of classifiers in

more detail and shed light on class imbalance related biases. For an

illustration of this see Hahn et al. (2013) . 

5. Use Stratified K-fold for cross-validation. K-fold cross validation

is highly sensitive to data imbalance such that in extreme cases, it
12 
can even become impossible to perform classification (i.e. if one fold

contains only a single class). We therefore strongly recommend the

use of Stratified K-fold, which maintains the imbalance ratio within

each of the selected folds. 

6. Report statistical significance AND chance level. Without the cor-

responding chance level, performance metrics can easily be misin-

terpreted. Especially for performance metrics like Acc, chance level

fluctuates widely with data imbalance. Thus, performance scores

should always be reported accompanied by —and should interpreted

in the light of —the associated chance level. The chance level can be

estimated in a data-driven approach using permutation tests. This

recommendation also applies if statistical tests were performed and

performance scores reached significance over random permutations.

7. Use hyperparameters. For many of its classifiers, scikit-learn pro-

vides hyperparameter options specifically designed for dealing with

imbalanced data; these should be routinely exploited. Our study

highlights the potential utility of this step and encourages the reader

to consider hyperparameters for an optimal performance. An exten-

sive tutorial on hyperparameter selection is beyond the scope of this

work. There is substantial useful literature on hyperparameter se-

lection for further reading ( Andonie, 2019; Glaser et al., 2020; Hos-

seini et al., 2020; Lemm et al., 2011; Luo, 2016; skl, 0000; Yang and

Shami, 2020 ). 

Limitations and perspectives This study’s results need to be in-

erpreted in the light of several limitations. First, many approaches for

andling imbalanced data have been proposed ( Haixiang et al., 2017 ).

n this study, we focused on families of models and performance metrics

hat are easily accessible and widely used in the neuroscience commu-

ity, in particular through the scikit-learn library. Specifically, we fo-

used on four popular classifiers and four standard evaluation metrics,

s well as two cross-validation schemes. Reviewing or comparing all ex-

sting tools is beyond the intended goal of this paper, but the Python

ode we provide is open-source, which allows users to extend these in-

estigations. 

Second, the data we used consisted of simulated Gaussian data dis-

ributions, as well as open-access electrophysiological (MEG and EEG)

nd fMRI brain signals. We did not examine the impact of noise, though

t could have been interesting to consider it, as it has been shown

o interact with the performance of the classifier ( Somasundaram and

eddy, 2017 ). 

Third, we only briefly mention the option of balancing the data

hrough over and under-sampling methods, and focused our investiga-

ion on evaluating the impact of data imbalance. 

Fourth, the aim of this study was to explore the individual classifiers’

ensitivities and relative changes of performance metrics over systemat-

cally imbalanced data. Therefore, the presented results do not allow a

omparison of individual classifiers’ absolute performance. 

Fifth, our main focus was to explore the effect of data imbalance on

lassification tasks. To this end, we explored the simplest form, namely

 binary classification, where the manipulation of the imbalance ratio is

traightforward. While creating imbalanced data for the multiclass case

s more complicated, most of our findings extend to this type of classifi-

ation —with some caveats. For instance, AUC is typically available only

or binary classification, although extensions for multiclass classification

xist ( Hand and Till, 2001 ). In addition, some algorithms such as SVM

nd LR reframe multi-class classification as a separate one-vs-the-rest

inary classification problem for each class; this effectively results in

lass imbalance. While other options exist, such as multinomial logistic

oss (i.e. cross-entropy loss) for LR or one-vs-one classification for SVMs,

e advise caution when using these algorithms in a multi-class setting.

otwithstanding, the main take-home message of this study —that BAcc

s generally more robust than Acc —still applies for multiclass classifica-

ion. 

Conclusion In this study, we have illustrated the effect of imbal-

nced data on some of the most prominent classification algorithms and



P. Thölke, Y.-J. Mantilla-Ramos, H. Abdelhedi et al. NeuroImage 277 (2023) 120253 

p  

t  

c  

m  

i  

a  

g  

h  

t  

a  

v  

o  

e

D

C

 

W  

t  

i  

y  

t  

D

r  

m  

t  

i  

m  

t  

i  

W  

t  

E  

i  

o  

M  

a  

E  

O

r  

m

D

 

a

A

 

g  

R  

t  

P  

(  

c  

a  

H  

t  

I  

w  

L  

s  

o  

w  

t  

K  

t

S

 

t

R

A  

 

A  

 

A  

A  

 

A  

B  

 

B  

 

B

B  

 

B  

 

B  

 

 

B  

 

C  

C  

C  

 

 

C

C  

D  

D  

D  

 

F  

F  

F  

 

F  

F  

G  

 

G  

G  
erformance metrics used in neuroscience. Among other things, one key

ake-home message is our suggestion to systematically use Balanced Ac-

uracy over the widely used Accuracy metric, whenever the aim is to

inimize overall classification error. In addition to its robustness to class

mbalance, Balanced Accuracy collapses to standard Accuracy for bal-

nced datasets and is readily extendable to multiclass problems. More

enerally, we hope that the recommendations and red flags reported

ere —using simulations and real brain data —will strengthen good prac-

ices for the application of supervised ML in neuroscience, and increase

wareness, especially among new-comers to the field. Lastly, by pro-

iding open-source code and well-documented pipelines, we hope that

thers will further explore this question with a wider variety of param-

ters, classifiers, and different types of classification problems. 
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