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Abstract

Many functional connectivity studies based on electrophysiological measurements, such as
electro- and magnetoencephalography (EEG/MEG), start their investigations by extracting
a narrowband representation of brain activity time series, and then computing their envelope
amplitudes and instantaneous phases, which serve as inputs to subsequent data processing.
The two most popular approaches for obtaining these narrowband amplitudes and phases
are: bandpass filtering followed by Hilbert transform (we call this the Hilbert approach);
and convolution with wavelet kernels (the wavelet approach). In this work, we investigate
how these two approaches perform in detecting the phenomenon of phase-amplitude coupling
(PAC), whereby the amplitude of a high-frequency signal is driven by the phase of a low-
frequency signal. The comparison of both approaches is carried out by means of simulated
brain activity, from which we run receiver operating characteristic (ROC) analyses, and of
experimental MEG data from a visuomotor coordination study. The ROC analyses show that
both approaches have comparable accuracy, except in the presence of interfering signals with
frequencies near the high-frequency band. As for the visuomotor data, the most noticeable
impact of the choice of approach was observed when evaluating task-based changes in PAC
between the delta (2-5 Hz) and the high-gamma (60-90 Hz) frequency bands, as we were
able to identify widespread brain areas with statistically significant effects only with the
Hilbert approach. These results provide preliminary evidence of the advantages of the Hilbert
approach over the wavelet approach, at least in the context of PAC estimates.
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1 Introduction

In Neuroscience, one of the most dynamic and fastest-evolving fields of study nowadays is
functional connectivity, i.e. how two or more sources of neuronal activity coordinate in re-
sponse to a given experimental task. Electro- and magnetoencephalography (EEG/MEG)
are two imaging modalities particularly suitable for connectivity studies due to their high
temporal resolution (on the order of milliseconds), allowing the analysis of interaction pat-
terns that vary over time and frequency (Baillet et al., 2001; Darvas and Leahy, 2007;
Schoffelen and Gross, 2009; Gross et al., 2013). One of the most promising applications
of EEG/MEG to functional interaction analysis is the estimation of phase-amplitude cou-
pling (PAC, also called nested oscillations), a phenomenon whereby the envelope amplitude
of a high-frequency (HF) signal is driven by the instantaneous phase of a low-frequency (LF)
one (Canolty et al., 2006; Jensen and Colgin, 2007; Canolty and Knight, 2010; Aru et al.,
2015; Nakhnikian et al., 2016); the HF and LF signals typically come from the neuronal
activity of a single location, but they may also refer to separate areas (Maris et al., 2011;
van der Meij et al., 2012; Guirgis et al., 2015).

Most studies dealing with PAC apply one of the following time-frequency approaches to
extract narrowband representations of brain activity and to calculate their envelope ampli-
tude and instantaneous phase: band-pass filtering of the activity signal followed by Hilbert
transform (we will call this the Hilbert approach) (Cohen, 2008; Kramer et al., 2008; Voytek
et al., 2010, 2013; McGinn and Valiante, 2014; Voytek et al., 2015a,b; Niknazar et al., 2015;
Ninomiya et al., 2015; Smith et al., 2015; Xu et al., 2015; Blain-Moraes et al., 2015; van Wijk
et al., 2015); or convolution with a continuous wavelet kernel (we will call this the wavelet ap-
proach), sometimes preceded by band-pass filtering (Maris et al., 2011; Canolty et al., 2012;
Florez et al., 2015; McGinn and Valiante, 2014; Kajihara et al., 2015; O'Connell et al., 2015;
Mizuhara et al., 2015; Sweeney-Reed et al., 2016; Vandenbroucke et al., 2015; van Driel et al.,
2015). The two approaches are formally equivalent, since both of them can be formulated
as linear convolutions with the activity time series, and one can make them to be identical
with an adequate choice of parameters (particularly those of the band-pass filters) (Bruns,
2004; Kiebel et al., 2005). Moreover, studies using simulated and real electrophysiological
data have demonstrated that there are only very small quantitative differences between the
approaches when they are applied to the estimation of narrowband amplitude envelopes
(Bruns, 2004) and to the computation of synchrony between the instantaneous phases at
two separate regions (Le Van Quyen et al., 2001). These similarities in performance, how-
ever, do not take into account that, in practice, bandpass filters with frequency responses
similar to those of wavelet convolutions have unattractive properties in terms of frequency
discrimination, and therefore are seldom applied to connectivity studies. In the specific case
of PAC estimations, another reason why the Hilbert and the wavelet approaches may not
have comparable performance has to do with particular features of the signals employed in
this type of analysis. The extraction of the amplitude envelope and the instantaneous phase
from narrowband signals requires analytic time series (i.e. with no spectral components for
negative frequencies), a condition satisfied by the Hilbert transform but not by the wavelet
convolution; the latter yields only approximately analytic representations, and only if the
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central frequency of the wavelet kernel is sufficiently high (Quian Quiroga et al., 2002). Since
the phases for the PAC computations are often computed for very low signal frequencies (as
low as 2 Hz), the use of wavelets in this context may result in inaccurate assessments of
coupling.

The main goal of the present work is evaluate quantitatively the performance of the
Hilbert and the wavelet approaches in the extraction of the signal representations required
for phase-amplitude coupling estimations from EEG/MEG data. We measure performance
with ROC curves and synthetic activity time series with varying noise levels, durations and
coupling strengths. We also illustrate the differences between the Hilbert and the wavelet
techniques with real MEG data acquired during a visuomotor coordination study. By car-
rying out these tests, we intend to call attention to characteristics of these methods that
must be dealt with carefully lest imprecise coupling measures be obtained, not only in PAC
studies.

2 Methods

In figure 1 we present an overview of the main transformations we performed on brain activity
time signals in order to obtain estimates of PAC. First, we extracted analytic representations
of the components of the input signal lying within the frequency bands of interest (in the
example of figure 1, 4-7 Hz and 30-60 Hz). With the Hilbert approach, these representations
were obtained in two steps, i.e. band-pass filtering followed by Hilbert transforms, whereas
with the wavelet approach, the convolution of the input with the wavelet kernels directly re-
sulted in complex-valued, narrowband time series. With either approach, we then computed
the instantaneous phase (for the lower band) and the envelope amplitude (for the higher
band) time series. Both PAC metrics used here (as detailed in subsection 2.3) depend on
the probability distributions of the amplitude envelopes as functions of the instantaneous
phases – specifically, on how much the distributions differ from those of a uniform random
variable.

2.1 The Hilbert approach

Let time series x(t) be a measure of localized brain activity. For instance, x(t) may be the
recorded voltages (or magnetic fields) at a specific EEG (or MEG) sensor or, in source space
analyses, the estimate of the electric current density at a chosen brain region reconstructed
from EEG or MEG data. The first step in the Hilbert approach is to apply a band-pass filter
to x(t) to obtain xB(t), a narrowband version of the original time series with components
(ideally) restricted to frequency band B – throughout this work, the bands investigated were
delta (δ, 2-5 Hz), theta (θ, 4-7 Hz), low-gamma (γL, 30-60 Hz) and high-gamma (γH , 60-90
Hz). All filters in the present study had a number of coefficients equal to Ntime/3 or its
nearest integer, Ntime being the number of time points in x(t), and they were computed with
an algorithm that seeks to minimize the least-squares error between an ideal bandpass filter
and the actual one (function firls.m in Matlab). The coefficients were then weighted by
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a Kaiser window with parameter 3, and finally the filtering was performed in the forward
and backward directions to prevent phase distortions (function filtfilt.m in Matlab).
For a given frequency band B = [f1, f2], the desired passband used in the filter design
algorithms was [f1−0.1∆f, f2 +0.1∆f ] (where ∆f = f2−f1), to ensure that the full band of
interest passes through the filter. The narrowband signal is then convolved with a function
whose frequency response is the Heaviside step function, resulting in xH(t) = Re[xH(t)] +
j{Im[xH(t)]}, the analytic representation of xB(t) (throughout this work, j =

√
−1). The

expressions to compute the Hilbert-based narrowband envelope amplitude and instantaneous
phase are, respectively:{

aH(t) =
√
{Re[xH(t)]}2 + {Im[xH(t)]}2

ϕH(t) = arctan (Im[xH(t)]/Re[xH(t)]) .
(1)

2.2 The wavelet approach

In this approach, we obtain xν(t), a complex, narrowband representation of the original time
series x(t), by convolving the latter with a continuous Morlet wavelet kernel, a Gaussian-
weighted, complex sinusoidal function whose expression is (Pantazis et al., 2009):

wν(t) =
(
2πσ2

t

)−1/2
exp

{
j2πνt− t2

2σt

}
, (2)

where ν is the kernel’s central frequency. In the time domain, |wν(t)| has the shape of a
centered Gaussian function with standard deviation σt, and in the frequency domain this
kernel is also Gaussian-shaped, with peak at ν and standard deviation σν = 1/(2πσt); we can
also express these standard deviations in terms of the number of cycles Ncyc, or the number of
wavelet cycles within a 6σt time interval, which is given by Ncyc = 2πσtν = ν/σν . Due to the
frequency response properties of the Morlet wavelets, the use of a single kernel to identify
signal components lying within the frequency band of interest may lead either to strong
attenuation of components far from the center of the band, or to the detection of components
lying outside the desired range. The selection of the optimal values for Ncyc and Nker (the
number of wavelet kernels with central frequencies uniformly spaced between f1 and f2) was
performed with simulated current density time series, as will be detailed below. Similarly
to equation (1), the wavelet-based envelope amplitude aW,ν(t) and the instantaneous phase
ϕW,ν(t) can then be expressed for each ν in terms of the real and imaginary parts of xν(t):{

aW,ν(t) =
√
{Re[xν(t)]}2 + {Im[xν(t)]}2

ϕW,ν(t) = arctan (Im[xν(t)]/Re[xν(t)]) .
(3)

Figure 2 displays a comparison between both approaches in terms of frequency response,
when they are set to discriminate signal components within the δ and the γH frequency
bands. To generate these plots, we created signals x0(t) = cos(2πf0t) with length 1 second,
sampling frequency 1 kHz and several values of f0, then computed the average envelope
amplitude of the output signal when both approaches are applied to x0(t).
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2.3 Phase-amplitude coupling

The phenomenon of phase-amplitude coupling occurs when the envelope amplitude of a fast
narrowband time series oscillates in synchrony with a slower signal (Canolty et al., 2006;
Jensen and Colgin, 2007). Several measures have been proposed in the literature to assess
the amount of PAC between two oscillations; in order to prevent that a poor performance be
due merely to the choice of PAC measure, we employ two such metrics in the present study.

One is based on the Kullback-Leibler divergence (Tort et al., 2010), which has been
demonstrated to provide better performance in terms of detection of strong effects and rejec-
tion of false positives (Soto and Jerbi, 2012). This PAC estimator seeks to quantify how much
the distribution of the high-frequency amplitudes ahi(t) as a function of the low-frequency
phases ϕlo(t) departs from an uniform distribution, the latter indicating no relationship
between ahi(t) and ϕlo(t). Specifically, we compute the following:

M1 =

Nbins∑
n=1

f(n) log[f(n)/g(n)], (4)

where f(n) is the (discrete) empirical distribution of ahi(t), g(n) is the uniform distribution,
and Nbins = 18 is the number of bins in which the ϕlo(t) values are divided in order to
estimate f(n) (i.e. the number of points in either distribution).

The other PAC estimator used here measures the linear relationship between ahi(t) and
exp{jϕlo(t)}, normalized by the mean energy of the high-frequency amplitude (Özkurt,
2012):

M2 =

∣∣∣∑Ntime

t=1 ahi(t) exp{jϕlo(t)}
∣∣∣√

Ntime

∑Ntime

t=1 a2hi(t)
. (5)

Unlike M1, the calculation of M2 does not require explicitly the estimation of f(n), but it
is related to the statistical dependence between the phases and the amplitudes, since M2 is
very small when f(n) is near-uniform.

With the Hilbert approach, the low-frequency band provides one time series ϕlo(t), and
the high-frequency band, one time series ahi(t); from these two time series a single PAC
estimate (M1 or M2) is computed. On the other hand, if more than one wavelet kernel is
used for either frequency band (say, Nker = 3 for both bands), then there will be multiple
PAC estimates from these signals (32 = 9 estimates for this example). For our comparisons
with the wavelet approach, the final PAC statistic was the mean over these multiple initial
PAC estimates.

2.4 ROC analysis with simulated data

The synthetic activity signals used in our comparisons between the Hilbert and the wavelet
approach consisted of a summation of three sinusoidal waves and noise. Two of the sinusoids
had frequencies falling within intervals Bhi = [fhi,1, fhi,2] and Blo = [flo,1, flo,2], respectively,
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and the envelope amplitude of the faster sinusoid was coupled with the slower one; the other
sinusoid oscillated at a frequency outside either Blo or Bhi, and was uncorrelated with the
other two sinusoids. The mathematical expression of the simulated activity signals, adapted
from the expression proposed by Tort et al. (2010), is given by:

x(t) = sin(2πflot+ φlo) + [p(t) sin(2πfhit+ φhi)] + sin(2πfIt) + n(t), (6)

where n(t) was zero-mean Gaussian noise with variance σ2, φlo and φhi were randomly
sampled from a uniform distribution between 0 and 2π, flo and fhi were randomly sampled
from a uniform distribution on the intervals Blo and Bhi, respectively, fI was a constant, and
time series p(t) had the expression:

p(t) = 0.5[(1− χ) sin(2πflot) + 1 + χ], (7)

χ being the coupling parameter. If χ = 1, there was no coupling between the fhi and the flo
sinusoids, while values of χ close to 0 represented strong coupling. The inclusion of the term
sin(2πfIt) in the expression of x(t) was meant to investigate the impact of signal components
not within Blo and Bhi in the estimation of PAC, since brain activity is usually not restricted
to the two frequency bands under study.

The generation of the synthetic time series x(t) and the subsequent PAC computation
were dependent on the following parameters:

• sampling frequency fs;

• signal length T = Ntime/fs;

• noise variance σ2;

• low- and high-frequency bands Blo (δ or θ) and Bhi (γL or γH);

• coupling parameter χ;

• PAC estimator, i.e. M1 or M2 (equations (4) and (5));

• frequency fI of signal component outside Blo and Bhi.

Our first goal was to determine the values of Ncyc (the number of cycles in the wavelet kernels)
and Nker (the number of kernels spanning the frequency bands of interest) that provided the
best classification performance. For this, we chose a fixed parameter set (T = 1s, fs = 500Hz,
χ = 0.5, σ = 1, PAC estimator M1) and, for each combination of Blo and Bhi, varied first
Ncyc with Nker = 1, then Nker with the optimal Ncyc. Having chosen the wavelet parameters,
we then proceeded to the comparison of approaches, changing the values for the time series
parameters (χ, σ etc.).

The ROC analysis for a given choice of parameter values was performed by creating
10000 realizations of x(t), 5000 with χ = 1 and 5000 with a specified value of χ < 1. From
each realization, we extracted one high-frequency amplitude envelope time series ahi(t) and
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one low-frequency instantaneous phase time series ϕlo(t) with the Hilbert transform; with
the wavelet approach, depending on the choice of number of kernels, we obtained a single
or several pairs of phase and amplitude time series, as discussed in subsection 2.2. PAC
was then estimated with one of the two methods described in subsection 2.3 – if Nker > 1
with the wavelet approach, we took the mean over all PAC estimates computed from every
combination of amplitude and phase time series. Finally, the ROC curve could be determined
by applying a variable threshold ϑ to the 10000 computed values of the chosen PAC metric:
for a given threshold value, the true positive fraction (TPF) was given by the proportion of
simulated x(t) with χ < 1 that resulted in a PAC estimate larger than or equal to ϑ, while
the proportion of the x(t) with χ = 1 with above-threshold PAC yielded the false positive
fraction (FPF).

2.5 MEG experimental data

To illustrate the differences between the two approaches when estimating PAC based on
real electrophysiology signals, we ran analyses on MEG data acquired from 15 subjects
during a visuomotor coordination study; details about the experimental paradigm and data
preprocessing can be found elsewhere (Jerbi et al., 2004, 2007). Briefly, the experiment
consisted of two conditions: visuomotor coordination (VM), in which the subjects were
required to watch a rotating cube on a screen in front of them and simultaneously prevent the
rotations by operating a trackball with their right hand; and rest (R), in which the subjects
stared at a still cube and did not perform any other activity. Steady-state data was recorded
during 8-minute sessions, in which every 8 to 12 seconds the conditions were switched. The
8-12 s data segments were visually inspected for eye blinks and other movement artifacts;
those that were not discarded were subjected to template-matching to deal with heart-beat
effects, and then divided into 1-second trials. The data sampling frequency was 312.5 Hz.

Each trial from each subject m, m ∈ {1, . . . , 15}, was converted into an estimated cortical
current density map by means of a regularized minimum-norm inverse method (Tikhonov
and Arsenin, 1977; Okada, 2003), which in turn was based on a simplified spherical head
model (Wolters et al., 2006; Mosher et al., 1999); these procedures we implemented with
BrainStorm, an open source software package (Tadel et al., 2011). The current density map
from trial l of condition k (k ∈ {VM,R}) can be written as a matrix Ŝklm, with dimension
Nsources ×Ntime. From each Ŝklm we computed two cortical maps mH

km and mW
km, each with

dimension Nsources×1, of the PAC estimate M (one map with the Hilbert approach, and one
with the wavelet approach). In order to test whether PAC (say, with the Hilbert approach)
changes significantly from R to VM at a given spatial location s for subject m, we employed
the statistic

ZH
kms =

UH
kms − E[UH

kms]√
V [UH

kms]
, (8)

where UH
kms is the Wilcoxon rank sum test statistic based on the s-th element of all column

vectors mH
km, with mean E[UH

kms] and variance V [UH
kms]. The standardization in equation (8)

results in a statistic ZH
kms which is approximately normal (Hollander et al., 2013), and by
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doing this we intended to compensate for different trial numbers across subjects. Repeating
this procedure for all subjects and both conditions yielded 30 values of ZH

kms corresponding to
location s, 15 per condition. From these 30 values we then computed a t-statistic THks , whose
probability distribution was estimated empirically with a nonparametric resampling method
(Nichols and Holmes, 2001). The resampling consisted in choosing randomly a sample of the
ZH
kms, multiplying them by −1, and then computing the surrogate THks with the new values of

ZH
kms; repeating this process several times provided the samples to the empirical distribution.

Given the large number of statistical tests that must be performed (one for each s), we used
these distributions to correct for multiple comparisons, based on a procedure that controls
for the false discovery rate (FDR), or the expected number of false positives (Benjamini and
Hochberg, 1995; Nichols and Hayasaka, 2003).

3 Results

3.1 Parameter selection

Table 1 lists the values of the areas under the ROC curves (AUCs) computed with simulated
time series and the wavelet approach, with different values of the number of wavelet cycles
Ncyc and for each combination of low-frequency (δ and θ) and high-frequency (γL and γH)
pairs. For this choice of parameters (as described in subsection 2.4), it was found that 4
wavelet cycles provided the best classification performance when the high-frequency band
was γH , while Ncyc = 3 was the optimal number of cycles in PAC estimations with γL as
the high-frequency band. Next, we performed the same analysis with simulations, but with
the optimal values of Ncyc and with different values of the number of wavelet kernels Nker;
the resulting AUCs appear in table 2. It can be seen that more wavelet kernels led to an
improvement for the wavelet approach, except for the frequency band pair θ− γL; however,
given that over all band pairs the change in performance was smaller than 2.5%, and that
higher Nker necessarily result in longer processing times, we chose Nker = 1 for our subsequent
comparisons between the approaches.

3.2 ROC analysis

The areas of the ROC curves (AUCs) obtained from the Hilbert and wavelet approaches
for different values of the parameters listed in section 2.4 are presented in figures 3-8; in
each of these tables, the AUC values are presented as a function of a given parameter
(or of two parameters, as in figure 7), while the other parameters are kept constant. As
figures 3 through 7 show (with a single exception), there were only very small differences in
classification accuracy between the Hilbert and the wavelet approaches when we varied the
coupling strength, the noise amplitude, the data length (either increasing time or sampling
frequency) and the interacting frequency bands. The exception appears in the lower plot of
figure 7, for which we changed the method for estimating PAC – i.e. the advantage of using
the wavelet approach was slightly higher than in the other figures mentioned above; still, for
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both approaches, the use of M2 (equation (5)) instead of M1 (4) to compute PAC resulted
in lower AUC values, which is in line with findings we presented elsewhere (Soto and Jerbi,
2012) regarding the benefits of choosing the Kullback-Leibler divergence-based expression
over other techniques to assess cross-frequency coupling. On the other hand, the presence
of a single sinusoidal function added to the simulated time series, as presented in figure 8,
caused a noticeable worsening in the accuracy of the wavelet approach in comparison with
the Hilbert approach, especially for sinusoid frequencies near the lower limit of the γH band
(60 Hz) – this decrease in AUC values was not observed for fI values near the upper limit of
the δ band (5 Hz), thus they do not appear in figure 8. From these plots we can also observe
that this degradation linked to the wavelet approach occurred regardless of whether the
sinusoidal interference was exclusive to a single condition or not, even though the disparities
in performance were not as strong in the case when fI 6= 0 only during the task condition
(i.e. in signals with χ < 1).

Given our simulation results, the factor mostly responsible for a disparity in detection
performance between the two approaches is the presence of signal components in spectral
regions near the high-frequency band under investigation. This finding, combined with
the inherent wideband nature of electrophysiological measurements, provides a plausible
explanation in real data analyses if there is a mismatch between significant brain activity
found with each of the approaches. In the next subsection, we present the results of such an
analysis.

3.3 MEG data

In figures 9, 10, 11 and 12 we present, for the Hilbert and the wavelet approaches, brain maps
of multi-subject t-statistics that assess the difference between PAC during the VM condition
and during rest, for four frequency band pairs: δ–γH , δ–γL, θ–γH and θ–γL, respectively.
We also indicate in figures 9 through 12 the brain regions where the use of each method
resulted in a statistically significant effect. The most striking differences between the two
approaches were observed with δ–γH and δ–γL coupling: in the former case (figure 9), the
Hilbert approach enabled the detection of task-based changes in the cerebellum, around the
visual cortex, in the right precentral sulcus, and near the left central sulcus (a decrease in the
latter region, and an increase in all the others), while the wavelet approach yielded no regions
with significant effects; as for the latter case (figure 10), we found with both approaches that
in the vicinity of the central sulcus in both hemispheres there was a task-based decrease,
but the spatial extent of the areas where there was this decrease was noticeably smaller with
the wavelet approach (there was also an increase in PAC in small regions in the cerebellum
and near the visual cortex that detected only with the Hilbert approach). As for the other
two frequency band pairs, represented in figures 11 and 12, there were only very small active
regions, such as a location near the left motor cortex with an increase in θ–γH PAC observed
only with the wavelet approach, and another in the cerebellum with an increase in θ–γL PAC
observed only with the Hilbert approach.
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4 Discussion

Functional connectivity studies based on electrophysiological recordings, such as MEG and
EEG, typically use as inputs to their analyses representations of brain activity signals within
well-defined frequency bands. Two of the most commonly implemented approaches to extract
these narrowband representations are band-pass filtering followed by computation of the
Hilbert transform (the Hilbert approach, as we called it here) and convolution with Morlet
wavelet kernels (the wavelet approach). In this work, our goal was to compare the Hilbert and
the wavelet approaches in terms of their capabilities of detecting a specific form of interaction
between brain signals – namely, phase-amplitude coupling, or PAC. In our results obtained
with simulated brain activity, both methods yield comparable performance in a variety of
practical scenarios; however, there was one feature of the synthetic time series that caused a
noticeable degradation of the wavelet approach’s discrimination accuracy relative to that of
the Hilbert approach – namely, the presence of a single sinusoidal wave oscillating at rates
near the high-frequency band chosen for investigation, and uncorrelated with the active
components within that band and the low-frequency one. This finding, combined with the
inherent wideband nature of typical electrophysiology signals, is thus a potential explanation
for the disparity we observed between the strongly coupled brain regions detected with
each approach when they were applied to MEG recordings acquired during a visuomotor
coordination experiment.

A common assumption in connectivity analyses performed with EEG or MEG data is
that there is no preferred approach for obtaining the narrowband representations of time
series, because the Hilbert and the wavelet approach can be expressed as linear convolutions
of the signals of interest and are thus mathematically equivalent (Bruns, 2004; Kiebel et al.,
2005). While the latter statement is correct, it does not correspond to how the approaches are
actually implemented, and this can in fact result in fluctuations in performance depending on
the approach selected, as our results demonstrate. From a theoretical perspective, although
it is indeed possible to use Morlet wavelet kernels for band-pass filtering and for estimation
of envelope amplitude and instantaneous phase (which would otherwise be computed with
Hilbert transforms), these wavelets not only have frequency responses that deviate strongly
from the properties usually desired in bandpass filters (namely, nearly flat passband, strong
signal attenuation in the stopband, and very short transition bands), as figure 2 indicates,
but they also perform only approximately the function of the Hilbert transform, which
yields output signals with zero energy in negative frequencies – alternatives to the Morlet
wavelet, such as the one proposed by Nakhnikian et al. (2016), are capable of dealing with
the latter issue but not with the former. That bandpass filters designed to resemble Morlet
wavelet kernels have indeed equivalent performance to the latter when estimating envelope
amplitudes, as observed by (Bruns, 2004), should not come as a surprise, but neither should
a noticeable disparity between the approaches in tasks other than amplitude estimation, or
when filters with better frequency discrimination are employed.

Given our present knowledge, it is difficult to determine the full set of reasons why,
for instance, both approaches perform well in phase-phase coupling analyses, as in (Quian
Quiroga et al., 2002; Le Van Quyen et al., 2001), whereas for PAC computations the use of
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the Hilbert approach is clearly advantageous in some scenarios, as described in the present
article. Our preliminary surveys (subsection 3.2) indicate a degradation in the performance
of the wavelet approach when there are interfering signals only a bit slower than the high-
frequency band, which is possibly linked to the frequency response properties of this approach
(i.e. the transition band obtained with the Morlet wavelet is much longer than that provided
by band-pass filtering, as displayed in figure 2), even though it remains to be determined the
actual relationship between frequency response and poorer perfomance in PAC estimation.
Phase-amplitude coupling compares two signals at different frequencies, whereas phase-phase
coupling, as computed by Le Van Quyen et al. (2001), deals with narrowband signals with the
same central frequency; keeping in mind that the most popular methods to evaluate phase
coupling are usually based on phase differences (Tass et al., 1998; Lachaux et al., 1999), one
might conjecture that the eventual leakage from frequencies outside the range of interest has
comparable impact in both signals under analysis and it gets canceled out when computing
this form of coupling. However, a much more extensive examination than the one carried
out here will be necessary to determine, first, why the Hilbert approach performs better in
PAC estimates when certain features of the brain signals are present, taking into account
other possible factors for degradations in performance (phase and/or amplitude distortions,
filter behavior near 0 Hz, and so on); this thorough examination may then be extended to
other forms of coupling.

In our simulations, we created different configurations mainly by modifying the proper-
ties of the synthetic time series, such as noise levels, signal length, coupling strength, and
sampling frequency. As for the parameters of both approaches, we either chose fixed values
that were in line with what one commonly finds in the literature dealing with brain connec-
tivity (e.g. filter length, type and window, with the Hilbert approach) or varied their values
only in order to find optima to be used in the subsequent approach comparisons (specifically,
number of wavelet kernels and their width). Regarding our procedure for this selection of
parameters, one may raise objections that we believe are worth addressing: first, we ac-
knowledge the possibility that the values we chose for the wavelet parameters are optimal
exclusively for those simulation settings, therefore effects such as the poorer performance
of the wavelet approach due to the interfering sinusoidal wave (figure 8) and the disparity
of active regions between the approaches when applied to the VM data (figures 9-12) could
be due merely to an inadequate choice of parameters. In that case, we must not exclude
the possibility that a different choice of parameters, while benefiting the wavelet approach
in some of the scenarios tested here (say, by reducing the disparity in the VM data maps),
also result in a degradation in other simulation settings, and even in significant divergences
between the approaches in other EEG/MEG acquisitions. A more specific issue is related
to the value of the number of wavelet kernels Nker = 1 we selected for all our analyses even
though other values of the parameter provided higher areas under the ROC curves (table 2).
Even taking into account considerations that more wavelet kernels would increase consider-
ably processing times while providing only marginal improvements in accuracy, one might
still argue that a higher Nker could minimize the approach discrepancies, at least in theory.
However, we find unlikely that convolving the time series with more wavelet kernels would,
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say, diminish the impact of the interfering sinusoids, especially given the frequency response
properties of the Morlet wavelets, as illustrated in figure 2.

The differences in detection performance between the two approaches was also observed
with MEG data obtained from a visuomotor coordination study. The most striking dif-
ferences were found in the brain maps for PAC changes between δ and γH and between
δ and γL, where the wide areas that appeared to have strong effects with the Hilbert ap-
proach were either not found (figure 9) or had smaller spatial extent (10) with the wavelet
approach. Given the findings we obtained with synthetic brain activity, especially the ef-
fects of the interfering sinusoids, one might feel tempted to assert that the images obtained
with the Hilbert approach are the ones reflecting most accurately the true activity in the
brain, but in order to validate such a statement more information should be gathered, e.g.
with procedures that measure electrical brain activity with better spatial resolution, such
as electrocorticography and depth electrodes. It would also be necessary to deal adequately
with methodological issues that may prevent the correct identification of brain behavior with
the available PAC methods (Aru et al., 2015), such as number of filters and their passband
width, non-stationarity, and influence of signal power fluctuations in PAC modulations – in
section 3.3, our goal with the VM data was essentially to observe the impact of the choice
of approach with real MEG measurements. That being said, it should be pointed out that
the some of the experimental outcomes of the present article coincide with other investiga-
tions dealing with the implications of visuomotor coordination in brain electrical activity:
for instance, there is evidence of increased delta (Jerbi et al., 2007; Bradberry et al., 2009;
Bourguignon et al., 2012; Mylonas et al., 2016) and gamma activity (Brovelli et al., 2017) in
the motor cortex, and of gamma activity in the visual cortex (Barratt et al., 2017). Again,
further analysis is necessary to better link our findings with those that appeared in the
literature, particularly because the latter did not necessarily involve PAC computations.

As indicated in the preceding paragraphs, an interesting topic for further research, from
a methodological point of view, is a more thorough examination of the properties of the
Hilbert and the wavelet approaches, in order to discover the reasons for the variations in
accuracy when computing PAC; eventually, the new information to be obtained can be
applied to a comparison between these approaches to other forms of connectivity, such as
phase synchrony, envelope amplitude correlations, and coherence. From a neuroscientific
perspective, we intend to keep applying methods that estimate functional interactions to our
visuomotor acquisitions, so that their impact on brain behavior may be better understood.
Another possible topic worth exploring is the improvement of the current algorithms that
extract narrowband representations of brain activity, in order to decrease processing times.
As an example, a common technique to compute the Hilbert transform (as used by Matlab)
is to evaluate the Fourier transform of the original signal, set to zero all components with
negative frequencies, and then apply the inverse Fourier transform. Though accurate, this
technique is inadequate in real-time situations, such as brain-computer interfaces, thus a
faster alternative to it would be desirable.
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Number of cycles Ncyc

1 2 3 4 5 6
δ-γH .7330 .8435 .8958 .9005 .8934 .8740
δ-γL .7815 .8894 .9091 .8699 .8208 .7583
θ-γH .7534 .8625 .9064 .9189 .9076 .9006
θ-γL .7764 .9081 .9138 .8869 .8376 .7926

Table 1: Values of areas under ROC curves (AUCs) as functions of the number of cycles Ncyc

of the wavelet kernels for each pair of frequency band of interest. The parameters chosen for
the simulated time series used in these computations were: T = 1s, fs = 500Hz, χ = 0.5,
σ = 1, PAC method M1 and Nker = 1. Optimal values for each frequency band pair are
highlighted.

Figure 1: Main steps in our procedure to compute PAC from brain activity time series. (a)
Input activity signal. (b) Analytic representations of the original signal’s components that lie
within the theta (top plot) and low-gamma (bottom plot) frequency bands; with the Hilbert
approach, these representations are obtained by band-pass filtering followed by applying the
Hilbert transform, while with the wavelet approach, convolution with the wavelet kernels
result directly in the analytic signals. (In these plots, blue lines represent the signals’ real
parts, and red lines indicate their imaginary parts.) (c) Theta instantaneous phase (top plot)
and low-gamma envelope amplitude (bottom plot) time series, computed from the analytic
signals shown in (b). (d) Probability distribution of the low-gamma envelope amplitude
values as function of the theta instantaneous phases, computed from the time series shown
in (c). The PAC metrics we implemented in this work, discussed in subsection 2.3, are ways
to assess how much this distribution departs from that of an uniform random variable.
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Figure 2: Frequency response of the Hilbert (blue line) and the wavelet (red line) approaches
when they are set to detect signals in the δ (top plot) and γH (bottom plot) frequency bands.
These plots display, as a function of frequency f0 and on a logarithmic scale, the average
output amplitude when both approaches are applied to signal x0 = cos(2πf0t).
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Figure 3: Areas under ROC curves for different values of the coupling parameter χ; blue bars
are used for the Hilbert approach, and red bars for the wavelet approach. The PAC method
was M1 for the top plot, and M2 for the bottom plot. The values for the other parameters
are: T = 1 s, σ = 1, Blo = δ, Bhi = γH , fs = 500 Hz and fI = 0.
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Figure 4: Areas under ROC curves for different values of the noise standard deviation σ;
blue bars are used for the Hilbert approach, and red bars for the wavelet approach. The
values for the other parameters are: T = 1 s, χ = 0.1, Blo = δ, Bhi = γH , fs = 500 Hz,
fI = 0 and PAC method M1.

Figure 5: Areas under ROC curves for different values of the signal length T in seconds; blue
bars are used for the Hilbert approach, and red bars for the wavelet approach. The values
for the other parameters are: χ = 0.5, σ = 1, Blo = δ, Bhi = γH , fs = 500 Hz, fI = 0 and
PAC method M1.
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Figure 6: Areas under ROC curves for different values of the sampling frequency fs in kHz;
blue bars are used for the Hilbert approach, and red bars for the wavelet approach. The
values for the other parameters are: χ = 0.5, T = 1 s, σ = 1, Blo = δ, Bhi = γH , fs = 500
Hz, fI = 0 and PAC method M1.

Figure 7: Areas under ROC curves for different values of the low- and high-frequency bands
Blo and Bhi; blue bars are used for the Hilbert approach, and red bars for the wavelet
approach. The values for the other parameters are: χ = 0.5, T = 1 s, σ = 1, fs = 500 Hz,
fI = 0 and PAC method M1.
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Figure 8: Areas under ROC curves for different values of frequency fI in Hz; blue bars are
used for the Hilbert approach, and red bars for the wavelet approach. For the top plot,
fI 6= 0 for all realizations of x(t); for the middle plot, fI 6= 0 only for the realizations of
x(t) with χ < 1; for the bottom plot, fI 6= 0 only for the realizations of x(t) with χ = 1.
The values for the other parameters are: χ = 0.5, σ = 1, Blo = δ, Bhi = γH , T = 1 s and
fs = 500 Hz.
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Figure 9: Multi-subject task-based changes in δ–γH coupling obtained from the VM data.
First column: brain map of the group-level t-statistics computed with the Hilbert approach
(H); second column: brain map of the group-level t-statistics computed with the wavelet
approach (W); third column: brain locations with statistically significant task-based PAC
changes computed with the Hilbert approach (H); fourth column: brain locations with statis-
tically significant task-based PAC changes computed with the wavelet approach (W). For the
last two columns, blue locations indicate task-based decrease in PAC, and orange locations
represent task-based increase.

Number of kernels Nker

1 3 5
δ-γH .9005 .9150 .9266
δ-γL .9091 .8962 .9122
θ-γH .9189 .9199 .9229
θ-γL .9138 .9050 .9066

Table 2: Values of areas under ROC curves (AUCs) as functions of the number of wavelet
kernels Nker for each pair of frequency band of interest. The parameters chosen for the
simulated time series used in these computations were: T = 1s, fs = 500Hz, χ = 0.5, σ = 1,
PAC method M1 and the values of Ncyc highlighted in table 1. Optimal values for each
frequency band pair are highlighted.
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Figure 10: Similar to figure 9, for δ–γL coupling.

Figure 11: Similar to figure 9, for θ–γH coupling.

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392886doi: bioRxiv preprint 

https://doi.org/10.1101/392886
http://creativecommons.org/licenses/by/4.0/


Figure 12: Similar to figure 9, for θ-γL coupling.
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