
NeuroImage 219 (2020) 117020
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
NeuroPycon: An open-source python toolbox for fast multi-modal and
reproducible brain connectivity pipelines

David Meunier a,*,1, Annalisa Pascarella b,1, Dmitrii Altukhov c, Mainak Jas d,
Etienne Combrisson a, Tarek Lajnef e, Daphn�e Bertrand-Dubois e, Vanessa Hadid e,
Golnoush Alamian e, Jordan Alves f, Fanny Barlaam g, Anne-Lise Saive e, Arthur Dehgan e,
Karim Jerbi e,h

a Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
b Institute for Applied Mathematics Mauro Picone, National Research Council, Roma, Italy
c National Research University Higher School of Economics, Centre for Cognition and Decision Making, Moscow, Russia
d Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
e Computational and Cognitive Neuroscience Laboratory (CoCo Lab), Psychology Department, University of Montreal, Montreal, QC, Canada
f Aarhus University, Denmark
g Institut TransMedTech de Montr�eal, QC, Canada
h MEG Center, University of Montreal, QC, Canada
A R T I C L E I N F O

Keywords:
Magnetoencephalography (MEG)
Electroencephalography (EEG)
Electrophysiology
MRI
Functional connectivity
Graph theory
Multi-modality
Python
MNE
Source reconstruction
Brain networks
Nipype
Brain imaging
Reproducible science
Pipelines
* Corresponding author.
E-mail address: david.meunier@univ-amu.fr (D.

1 Equal contribution.

https://doi.org/10.1016/j.neuroimage.2020.11702
Received 3 October 2019; Received in revised form
Available online 6 June 2020
1053-8119/© 2020 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

Recent years have witnessed a massive push towards reproducible research in neuroscience. Unfortunately, this
endeavor is often challenged by the large diversity of tools used, project-specific custom code and the difficulty to
track all user-defined parameters. NeuroPycon is an open-source multi-modal brain data analysis toolkit which
provides Python-based template pipelines for advanced multi-processing of MEG, EEG, functional and anatomical
MRI data, with a focus on connectivity and graph theoretical analyses. Importantly, it provides shareable
parameter files to facilitate replication of all analysis steps. NeuroPycon is based on the NiPype framework which
facilitates data analyses by wrapping many commonly-used neuroimaging software tools into a common Python
environment. In other words, rather than being a brain imaging software with is own implementation of standard
algorithms for brain signal processing, NeuroPycon seamlessly integrates existing packages (coded in python,
Matlab or other languages) into a unified python framework. Importantly, thanks to the multi-threaded processing
and computational efficiency afforded by NiPype, NeuroPycon provides an easy option for fast parallel processing,
which critical when handling large sets of multi-dimensional brain data. Moreover, its flexible design allows users
to easily configure analysis pipelines by connecting distinct nodes to each other. Each node can be a Python-
wrapped module, a user-defined function or a well-established tool (e.g. MNE-Python for MEG analysis, Rada-
tools for graph theoretical metrics, etc.). Last but not least, the ability to use NeuroPycon parameter files to fully
describe any pipeline is an important feature for reproducibility, as they can be shared and used for easy repli-
cation by others. The current implementation of NeuroPycon contains two complementary packages: The first,
called ephypype, includes pipelines for electrophysiology analysis and a command-line interface for on the fly
pipeline creation. Current implementations allow for MEG/EEG data import, pre-processing and cleaning by
automatic removal of ocular and cardiac artefacts, in addition to sensor or source-level connectivity analyses. The
second package, called graphpype, is designed to investigate functional connectivity via a wide range of graph-
theoretical metrics, including modular partitions. The present article describes the philosophy, architecture,
and functionalities of the toolkit and provides illustrative examples through interactive notebooks. NeuroPycon is
available for download via github (https://github.com/neuropycon) and the two principal packages are docu-
mented online (https://neuropycon.github.io/ephypype/index.html, and https://neuropycon.github.io/graph
pype/index.html). Future developments include fusion of multi-modal data (eg. MEG and fMRI or intracranial
EEG and fMRI). We hope that the release of NeuroPycon will attract many users and new contributors, and
Meunier).

0
20 May 2020; Accepted 2 June 2020

vier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://github.com/neuropycon
https://neuropycon.github.io/ephypype/index.html
https://neuropycon.github.io/graphpype/index.html
https://neuropycon.github.io/graphpype/index.html
mailto:david.meunier@univ-amu.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117020&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.117020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.117020


D. Meunier et al. NeuroImage 219 (2020) 117020
facilitate the efforts of our community towards open source tool sharing and development, as well as scientific
reproducibility.
2 http://deim.urv.cat/~sergio.gomez/radatools.php.
3 http://www.sphinx-doc.org/en/master/.
4 https://sphinx-gallery.github.io/index.html.
1. Introduction

Recent years have witnessed a massive push towards reproducible
experiments in neuroscience. Some of the leading projects include
OpenfMRI (now OpenNeuro, Poldrack & Gorgolewski, 2017), allowing
researchers worldwide to test hypothesis on a massive cohort, Neuro-
Synth (Yarkoni et al., 2011) a brain mapping framework to automatically
conduct large-scale, high-quality neuroimaging meta-analyses or the
development of the Nipype framework (Gorgolewski et al., 2011), a very
useful tool developed initially for the MRI field and which facilitates data
analysis by wrapping commonly-used neuroimaging software into a
common Python framework. Nipype was originally designed to provide
rapid comparative development of algorithms and to reduce the learning
curve necessary to use different packages. Nipype’s original intention
was to provide a concrete tool to respond to some criticisms of the
neuroscientific community as a whole for the lack of reproducibility of
experiments, in particular when it comes to attempts to reproduce
research on a wider scale both in basic research and clinical trials (Gil-
more et al., 2017). One step forward in this direction is also to provide
the source code used for a given analysis pipeline, not to mention sharing
data in standard formats (Poline et al., 2012; Gorgolewski et al., 2015).

The release of Nipype was a major step forward allowing researchers
to wrap virtually all fMRI and MRI software into a common framework,
where all analysis steps and, critically, all the parameter settings are
tractable and easily accessible. Nipype is for instance used to wrap, into a
common pipeline, some of the most frequently used MRI research tools,
ranging from SPM (Penny et al., 2011), FSL (Smith et al., 2004) and AFNI
in functional MRI (Cox, 1996), ANTS (Avants et al., 2009), Freesurfer in
structural MRI (Dale et al., 1999), Camino (Cook et al., 2006) and Mrtrix
in diffusion imaging (Tournier et al., 2012). The advantages of having a
single unified framework are particularly obvious, especially when it
comes to scaling up and/or reproducing neuroimaging research.

Interestingly, while encouraging progress has been achieved with
such strategies in the fMRI field, similar initiatives for the fields of MEG
and EEG data analysis are still in their early days (Bigdely-Shamlo et al.,
2015; Andersen, 2018; Jas et al., 2018; Niso et al., 2019). Yet, certain
MEG and EEG analyses consist of a sequence of processing steps that may
involve several software packages and possibly multiple programming
languages and environments. An MEG analysis that starts from raw data
and ends up with group-level statistics may, for example, require the use
of Freesurfer for cortical segmentation,MNE for preprocessing and source
estimation, radatools for connectivity metrics and Visbrain (Combrisson
et al., 2019) for 3D visualizations. Thus, most of the processing is con-
ducted using multiple heterogeneous software and in-house or custom
tools leading to workflows that are hard or even impossible to reproduce
in practice. Furthermore, with the exponential increase in data dimen-
sionality and complexity, conducting state-of-the-art brain network an-
alyses using MEG and EEG is becoming an increasingly challenging and
time-consuming endeavor. Streamlining all the steps of MEG/EEG data
analyses into a unified, flexible and fast environment could greatly
benefit large-scale MEG/EEG research and enhance reproducibility in
this field.

Here, we describe NeuroPycon, a free and open-source Python
package, which allows for efficient parallel processing of full MEG and
EEG analysis pipelines which can integrate many available tools and
custom functions into a single workflow. The proposed package uses the
Nipype engine framework to develop shareable processing pipelines that
keep track of all analyses steps and parameter settings. Although initially
developed with MEG and EEG in mind, NeuroPycon allows for multi-
modal brain data analysis thanks to the flexibility and modularity it in-
herits form Nipype.
2

This paper describes the architecture, philosophy and rationale behind
NeuroPycon. The functionalities of ephypype and graphpype are illustrated
by describing how NeuroPycon is used to wrap existing tools that analyze
electrophysiological data (e.g. MNE-python, Gramfort et al., 2013) and
that perform graph-theoretical analysis (radatools2). Of course, wrapping
many other software tools or packages within NeuroPycon workflows is
possible by writing new Nipype interfaces to the desired tool.

2. Pipeline design, data structure and analysis workflow

2.1. Overview

2.1.1. Description
NeuroPycon provides computationally efficient and reusable work-

flows for advanced MEG/EEG and multi-modal functional connectivity
analysis pipelines. Because NeuroPycon is powered by the Nipype engine
(Gorgolewski et al., 2015) it benefits frommany of its strengths and shares
the same philosophy. The NeuroPycon workflows expand and promote the
use of the Nipype framework to the MEG/EEG research community.
NeuroPycon links different software packages through nodes connected in
acyclic graphs (Fig. 1A). The output of one pipeline can be provided as
inputs to another pipeline. Furthermore, NeuroPycon is designed to pro-
cess subjects in parallel on many cores or machines; If the processing is
interrupted due to an error, NeuroPycon will only recompute the nodes
which do not have a cache (Fig. 1B). The current release of the Neuro-
Pycon project includes two distinct packages: The ephypype package in-
cludes pipelines for electrophysiological data analysis and a command-line
interface for on the-fly pipeline creation. A second one called graphpype is
designed to investigate functional connectivity via a wide range of
graph-theoretical metrics, including modular partitions.

Although based on the same Nipype framework, graphpype and
ephypype can be used separately. We designed the software with these
two distinct packages so that users who only need the functionalities of
one, don’t need to bother installing useless components. For instance,
users who only want to make graph-theoretical analysis on fMRI data will
not be obliged to install mne-python, and conversely MEG users who do
not plan to do graph-theoretical analysis will not have to install rada-
tools. Furthermore, having separate packages makes maintaining and
contributing to the packages easier.

2.1.2. Software download, free license and documentation
NeuroPycon is freely available to the research community as open

source code via GitHub (https://github.com/neuropycon). A basic user
manual and some example scripts can be found in the tutorial webpages:
https://neuropycon.github.io/ephypype/index.html, https://neuropycon
.github.io/graphpype/index.html.

The documentation is built using sphinx,3 a tool developed for python
documentation that uses reStructuredText as markup language; an
extension of sphinx, sphinx gallery,4 was used to create an examples
gallery by structuring the example scripts to automatically generate
HTML pages.

Graphpype and Ephypype are provided under the permissive BSD 3-
Clause license, which allows the use, modification and re-usability, under
the condition of propagating the license. Furthermore, the BSD license
allows to use the package for both commercial and non-commercial
purposes.

https://github.com/neuropycon
https://neuropycon.github.io/ephypype/index.html
https://neuropycon.github.io/graphpype/index.html
https://neuropycon.github.io/graphpype/index.html
http://deim.urv.cat/%7Esergio.gomez/radatools.php
http://www.sphinx-doc.org/en/master/
https://sphinx-gallery.github.io/index.html


D. Meunier et al. NeuroImage 219 (2020) 117020
2.1.3. Unit tests, continuous integration and python coding standards
A lot of effort has been put into providing high-quality code that is

kept intact through tests and continuous integration (CI). Most of the
functions and classes of the package are covered by unit-tests (as of
writing this article: 68% and 70% coverage for ephypype and graphpype
respectively), including tests on several kinds of data (Nifti MRI files, FIF
MEG files, NumPy arrays and Radatools files). All the code also conforms
to a standard Python coding convention known as PEP8 which facilitates
readability and consistency with software packages in the Python sci-
entific ecosystem.

2.2. NeuroPycon packages

2.2.1. Ephypype
Ephypype is a package designed to analyze electrophysiological data

using the Nipype engine. In particular, it focuses on MEG/EEG data and
exploits many functions from the MNE-Python package (Gramfort et al.,
2013), as well as a range of standard Python libraries such as NumPy
Fig. 1. A. NeuroPycon offers reusable NiPype workflows for MEG/EEG processing a
linking nodes connected in acyclic graphs. The output of one pipeline can be provi
process subjects in parallel. If the processing interrupts due to an error, NeuroPyco
example of ephypype pipeline for processing raw MEG data and anatomical T1 MRI to
the analysis. The nested structure keeps track of which pipeline corresponds to the

3

(Van Der Walt et al., 2019) and SciPy (Virtanen et al., 2019). Current
implementations allow for MEG/EEG data import, pre-processing and
cleaning by automatic removal of eyes and heart related artefacts, source
reconstruction, as well as sensors or source-level spectral connectivity
analysis and power spectral density computation. The ephypype package
features a convenient and sophisticated command-line interface which is
designed to make the best use of UNIX shell capabilities and NiPype
framework for parallel processing of MEG/EEG datasets. In brief, the
command-line interface utilizes pattern-matching capabilities of UNIX
shell to select files we want to process from the nested folder structure of
a dataset and then dynamically creates a processing pipeline combining
computational nodes defined in the ephypype package. In addition to
being convenient, the command-line interface enables users with little
programming background to easily create complex analysis pipelines
that process hundreds of subjects, through a single command line.

2.2.2. Graphpype
The graphpype package includes pipelines for graph theoretical
nd functional connectivity pipelines. It interfaces different software packages by
ded as inputs to another pipeline B. The NiPype engine allows NeuroPycon to
n will recompute only those nodes which do not have a cache. C. Illustrative
produce an inverse solution. D. Example of json file with the parameters used in

parameters.



D. Meunier et al. NeuroImage 219 (2020) 117020
analysis of neuroimaging data. Computations are mostly based on rada-
tools, a set of functions to analyze Complex Networks (http://deim.urv.
cat/~sergio.gomez/radatools.php). Radatools comes as a set of freely
distributed binary executables, obtained from compiling from a library
originally written in Ada, and the executables are thus wrapped as
command line nodes in nipype.

Although it was initially mainly used on fMRI data, the graphpype
package can be used for the computation of graph metrics for multiple
modalities (MEG, EEG, fMRI etc). This package has been developed to
address the needs of functional connectivity studies that would benefit
from the computation of a wide graph-theoretical metrics, including
modular partitions (Achard et al., 2006; Bullmore and Sporns, 2009).

It is important to keep in mind that NeuroPycon pipelines can be used
in a stand-alone mode but that they can also be combined within building
blocks to form a larger workflow (Fig. 2), where the input of one pipeline
comes from the outputs of another. As an example, the inverse solution
pipeline could be used as a stand-alone pipeline to perform source
localization or its output could be used as input to a new pipeline that
performs all-to-all connectivity and graph analysis on the set of recon-
structed time series. In principle, each pipeline, is defined by connecting
different nodes to one another, with each node being either a user-
defined function or a python-wrapped external routine (e.g. MNE-
python modules or radatools functions).

2.3. Data import

Electrophysiology data that one would want to analyze with Neuro-
Pycon can be in various forms and distinct data formats. NeuroPycon is
designed to be able to import (1) raw MEG/EEG data, (2) time series, (3)
fMRI data (4) connectivity matrices. Fig. 2 showcases four different
Fig. 2. Four doorways to NeuroPycon: Illustrative pipelines showcasing different dis
estimation, connectivity and graph analysis starting from raw MEG data (door 1), o
nectivity and graph analysis on fMri data (door 3) or only graph analysis from conn

4

pipeline options depending on these four distinct import levels (doors).
The formats required for the first option are primarily Elekta (.fif) or CTF
(.ds), but import from BrainVision data (.vhdr/.eeg extension) or ascii
format, is also available. New different file formats can be easily added by
wrapping the corresponding import functions. Import options 2 and 4 (i.e.
either time series or connectivity matrices) support.mat (Matlab) and.npy
(NumPy) formats, while fMRI data import support nifti files (Fig. 2, option
3). Data import for the second option (Fig. 2, door 2) expects data structure
of sensor or source-level time-series, allowing to read in data that may
have already been analyzed by other software (e.g. BrainStorm (Tadel
et al., 2011) or FieldTrip (Oostenveld et al., 2011)), and then connectivity
data (possibly followed by graph metrics) are calculated using appropriate
pipeline of NeuroPycon. The user can alternatively directly import con-
nectivity matrices (Fig. 2, door 3) computed elsewhere and solely use
NeuroPycon to compute graph-theoretical metrics.

3. Presentation of the main pipelines

We now introduce the main processing pipelines that are currently
proposed in the NeuroPycon software suite. These can be seen as pipeline
templates or building blocks. Each pipeline may be used either inde-
pendently (using its own data grabber node) or in combination. A data
grabber node allows the users to define flexible search patterns, which
can be parameterized with user defined inputs (such as subject ID, ses-
sion, etc.). It is also possible to reassemble the preprocessing steps as
required. For example, we can directly feed the pre-processed sensor-
space signals to the spectral connectivity pipeline (i.e. skipping the
source estimation step).

In the online documentation, we provide some key example scripting
which allow the user to interactively run implementations. All example
tinct uses depending on the type of input data: Full MEG preprocessing, source
nly connectivity and graph analysis from time series (door 2), functional con-
ectivity matrices computed elsewhere (door 4).

http://deim.urv.cat/%7Esergio.gomez/radatools.php
http://deim.urv.cat/%7Esergio.gomez/radatools.php


D. Meunier et al. NeuroImage 219 (2020) 117020
scripts are based on one of a sample MEG dataset from the OMEGA
project (https://www.mcgill.ca/bic/resources/omega). The original
data format follows BIDS specification (K. J. Gorgolewski et al., 2016;
Niso et al., 2018). The NeuroPycon parameters settings (e.g. for the
connectivity method, the source reconstruction algorithm, etc.), which
are necessary for each example script, are defined in a json file that can
simply be downloaded from the documentation page. JSON format has
the advantage that it can be edited manually, and validated using
external tools such as https://jsonlint.com/.
3.1. Data preprocessing pipeline (ephypype) [pipeline #1]

The preprocessing pipeline performs filtering, it optionally down-
samples the MEG raw data and runs an ICA algorithm for automatic
removal of eye and heart related artifacts. The implementation is pri-
marily based on the MNE-Python functions that decompose the MEG/
EEG signal by applying the FastICA algorithm (Hyvarinen, 1999). An
HTML report is automatically generated and can be used to correct
and/or fine-tune the correction in each subject. The inclusion and
exclusion of more ICA components could be performed either by
Fig. 3. The preprocessing pipeline runs an ICA algorithm for an automatic removal o
properties (e.g. power spectrum) of ICA components obtained by running the exam
io/ephypype/auto_examples/plot_preprocessing.html) on the raw MEG sample datas

5

re-running the same preprocessing pipeline with different option pa-
rameters (recommended option) or interactively in a Jupyter notebook
(or IPython). In this last case, we suggest to save the new ICA solution and
cleaned data in the corresponding node folder. Fig. 3 shows the ICA
decomposition obtained by running the pipeline on the sample dataset.
The corresponding example script can be download as Jupyter notebook
in the documentation website https://neuropycon.github.io/ephypype/a
uto_examples/plot_preprocessing.html.
3.2. Source reconstruction pipeline (ephypype) [pipeline #2]

The inverse solution pipeline performs the source reconstruction step,
i.e. the estimation of the spatio-temporal distribution of the active neural
sources starting either from the raw/epoched data specified by the user, or
from the output of the preprocessing pipeline (the cleaned raw data). The
output of the source reconstruction pipeline will be the matrix of the
estimated sources time series that could alternatively also be used as input
of the spectral connectivity pipeline to study functional connectivity.

The nodes of the inverse solution pipeline wrap the MNE python
functions performing the source reconstruction steps, i.e. the
f ocular and cardiac artifacts. Here we show the time series, topomap and some
ple script provided in the documentation website (https://neuropycon.github.
et.

https://www.mcgill.ca/bic/resources/omega
https://jsonlint.com/
https://neuropycon.github.io/ephypype/auto_examples/plot_preprocessing.html
https://neuropycon.github.io/ephypype/auto_examples/plot_preprocessing.html
https://neuropycon.github.io/ephypype/auto_examples/plot_preprocessing.html
https://neuropycon.github.io/ephypype/auto_examples/plot_preprocessing.html


Fig. 4. Graphical depiction of the source reconstruction pipeline with its node and connections.

5 https://www.mne-cpp.org/.

D. Meunier et al. NeuroImage 219 (2020) 117020
computation of the lead field matrix and the noise covariance matrix.
These matrices are the main ingredients to solve the MEG/EEG inverse
problem by one of the three inverse methods currently available in the
ephypype package: MNE (H€am€al€ainen et al., 1993; Lin et al., 2006),
dSPM (Dale et al., 2000), sLORETA (Pascual-Marqui, 2002).

In particular, the lead field matrix is computed by the Boundary
Element Method (BEM) (Gramfort et al., 2010) provided in MNE-Python.
We use a single layer, i.e. the brain layer for MEG data, while for EEG
datasets a three compartment BEM (scalp, skull and brain layers) is
chosen. A graphical depiction of the source reconstruction pipeline with
its node and connections is shown in Fig. 4.

To use this pipeline, a user would either need a template MRI or the
individual anatomical data. In the latter case, the segmentation of the
anatomical MRI has to be performed by Freesurfer in order to generate
surfaces and parcellations of the structural data. The anatomical
segmented data will be used in the pipeline to extract the BEM surfaces
and to create the source space. By default it is expected that the current
dipoles are situated on the cortical surface, but it is also possible to set a
mixed source space constituted by the cortical surface and the volumes of
6

some user-selected subcortical regions, as amygdala, thalamus, cere-
bellum, etc. Finally, the segmented MRI data are also used to perform the
coregistration step between the MEG/EEG and MRI coordinate system.
This is the only manual step one has to perform before using the source
reconstruction pipeline and can be performed by mne_analyze process of
MNE-C5 or an MNE-Python Graphical User Interface (GUI). In the future,
automatic co-registration will become available when this feature be-
comes a robust function in MNE python. A template MRI, just like the one
provided by the Freesurfer software, could be used if the individual
anatomical data are not available. Fig. 7 shows the results obtained by
running the inverse solution pipeline on the sample dataset. The script
used to generate this figure can be downloaded as Jupyter notebook from
the documentation website https://neuropycon.github.io/ephypype/au
to_examples/plot_inverse.html.

https://neuropycon.github.io/ephypype/auto_examples/plot_inverse.html
https://neuropycon.github.io/ephypype/auto_examples/plot_inverse.html
https://www.mne-cpp.org/


D. Meunier et al. NeuroImage 219 (2020) 117020
3.3. Spectral power pipeline (ephypype) [pipeline #3]

The power pipeline computes the power spectral density (PSD) in
either sensor or source space. It also computes the mean PSD for each
frequency band specified by the user. The latter can choose to compute
the PSD by Welch’s method or multitapers. The input of the pipeline can
be either raw/epoched data specified by the user or simply the output of
another pipeline, e.g. the cleaned raw data from the preprocessing
pipeline or the estimated source time series from the source recon-
struction pipeline. Fig. 6A shows the results obtained by running the
power pipeline on the sample dataset. The script used to generate this
figure can be downloaded as Jupyter notebook in the documentation
website https://neuropycon.github.io/ephypype/auto_examples/plot_po
wer.html.

3.4. Spectral connectivity pipeline (ephypype) [pipeline #4]

The spectral connectivity pipeline computes the connectivity matrices
in the frequency domain. The current implementation is based on the
spectral connectivity computation in MNE, and can be computed on time
series in NumPy format (in either sensor or source space), or even from
Matlab format after conversion using the SciPy package. All the
frequency-domain coupling measures available in MNE-Python are
directly accessible through this pipeline (e.g. Coherence, Imaginary
Coherence, Phase Locking Value, Phase-Lag Index). Fig. 6B shows the
results obtained by running the connectivity pipeline on the sample
dataset. The script used to generate this figure can be downloaded as
Jupyter notebook in the documentation website https://neuropycon.gith
ub.io/ephypype/auto_examples/plot_connectivity.html.

3.5. Functional connectivity analysis (graphpype) [pipeline #5]

Starting from pre-processed functional MRI data, we provide a pipeline
named “nii_to_conmat”, which allows the user to compute functional
connectivity from a given file in Nifti format, and a corresponding tem-
plate. The pipeline convolves the template with a grey-matter mask, ex-
tracts time series under the restriction of sufficient proportion of voxels in
the template ROI, regresses non-interest covariates (white matter, cere-
brospinal fluid, movement parameters, etc) and computes Z-score Pearson
correlations over residuals signals. An example of this pipeline, followed
by the graph-theoretical analyses pipeline (see following section) is pro-
vided at https://neuropycon.github.io/graphpype/auto_examples/plot_nii
_to_graph.html#nii-to-graph.

3.6. Graph-theoretical analyses pipeline (graphpype) [pipeline #6]

Once a connectivity matrix has been obtained, the most common step
to compute graph theoretical (GT) analyses involves a form of thresh-
olding to “sparsify” the matrix and keep only the most relevant edges.
One classical thresholding option is the use of a density-based thresh-
olding (e.g. only keep edges with the 5% highest connectivity values)
(Rubinov and Sporns, 2010; Bassett and Lynall, 2013). Another possi-
bility is fixed value thresholding (e.g. all coherence values lower than 0.5
are put to zero). For signed metrics, such as Pearson correlation, the sign
will be taken into account at this step.

The computation of standard GTmetrics (includesweighted and signed
versions) primarily relies on wrapping one of the most efficient modularity
optimisation software tools calledRadatools (http://deim.urv.cat/~sergio.
gomez/radatools.php). Radatools offers the possibility to compute GT
properties for several classes of networks (binary/weighted, unsigned/
signed) and allows the computation of most global (e.g. mean path length,
global efficiency, clustering coefficient, assortativity, as well as their
weighted counterparts) and nodal metrics (e.g. degree, betweenness cen-
trality, etc.). Radatools is mostly known for highly efficient modularity
optimisationpossibilities. In addition tobeingamongst the few tools tooffer
modular partition on weighted signed networks, it also offers the choice of
7

several algorithms ranging from lower quality with a fast execution algo-
rithm (Newman et al., 2006) to exhaustive searches (high quality but time
consuming). Interestingly, it is possible to define a sequence of these algo-
rithms to combine the advantages of these algorithms. Some specificmetric
computation, mostly related to node roles (participation coefficient and
within-module normalized degree, seeGuimera et al., 2005) have also been
specifically coded and are part of Radatools’ standard modular decompo-
sition pipeline. The script used to generate thisfigure can bedownloaded as
Jupyter notebook on https://neuropycon.github.io/graphpype/
auto_examples/plot_inv_ts_to_graph.html.

Another package allowing for graph-theoretical analysis, very popu-
lar in the neuroscience community, is the Brain Connectivity Toolbox
(Rubinov and Sporns, 2011). As an example of a wrap, and to show po-
tential users what would be done to integrate their favorite software
functions, we documented the definition of a small pipeline consisting of
one node (K-core from the bctpy package): https://neuropycon.github.
io/graphpype/how_to_wrap.html.

4. Validation of NeuroPycon group analysis using previously
published work on open data

In order to show how to use NeuroPycon pipelines to analyze a cohort
of subjects, we replicated the results obtained by Jas et al. (2018). In this
article, the authors reanalysed an open dataset from Wakeman and
Henson (2015) using the MNE software package, with the aim of
providing group analysis pipelines with publicly available code and
documentation. The data consist of simultaneous MEG/EEG recordings
from 19 healthy participants performing a visual recognition task. Sub-
jects were presented images of famous, unfamiliar and scrambled faces.
Each subject participated in 6 runs, each 7.5 min in duration. The data
were acquired with an Elekta Neuromag Vectorview 306 system. We
focused only on MEG data and used NeuroPycon pipeline #1 to pre-
process the MEG raw data and pipeline #2 to perform source recon-
struction of time-locked event-related fields.

In the following, we describe the main steps of the analysis. All pa-
rameters of the analysis are set in a single json file, with a nested structure
to keep track of which parameters correspond to which steps. All the
scripts can be downloaded from https://github.com/neuropycon/n
europycon_demo.git. Note that anatomical segmentation is performed
using a dedicated script and the preprocessing and source reconstruction
pipelines are combined in a single workflow. The individual steps of this
group-analysis replication with NeuroPycon are described below.

4.1. Cortical segmentation

The solution of MEG inverse problem requires knowledge of the so-
called lead field matrix. A cortical segmentation of the anatomical MRI
is necessary to generate the source space, where the neural activity will
be estimated. A Boundary Element Model (BEM) which uses the
segmented surfaces is used to construct the lead field matrix. To perform
the cortical segmentation we provide a workflow based on nipype
wrapping the recon-all command of Freesurfer. The output of recon-all
node is used as input of another node that creates the BEM surfaces
using the FreeSurfer watershed algorithm (Segonne et al., 2004). The
workflow generates an HTML report displaying the BEM surfaces as
colored contours overlaid on the T1 MRI images to verify that the sur-
faces do not intersect.

The main advantage to use this workflow lies in the parallel pro-
cessing provided by nipype engine, that allows segmenting the 19 MRI
data in less than two days while processing a single MRI generally takes
one day.

4.2. MEG data processing and independent component analysis (ICA)

The data provided by OpenfMRI were already processed using the
proprietary Elekta software MaxFilter (Taulu, 2006), used to remove

https://neuropycon.github.io/ephypype/auto_examples/plot_power.html
https://neuropycon.github.io/ephypype/auto_examples/plot_power.html
https://neuropycon.github.io/ephypype/auto_examples/plot_connectivity.html
https://neuropycon.github.io/ephypype/auto_examples/plot_connectivity.html
https://neuropycon.github.io/graphpype/auto_examples/plot_nii_to_graph.html#nii-to-graph
https://neuropycon.github.io/graphpype/auto_examples/plot_nii_to_graph.html#nii-to-graph
http://deim.urv.cat/%7Esergio.gomez/radatools.php
http://deim.urv.cat/%7Esergio.gomez/radatools.php
https://neuropycon.github.io/graphpype/auto_examples/plot_inv_ts_to_graph.html
https://neuropycon.github.io/graphpype/auto_examples/plot_inv_ts_to_graph.html
https://neuropycon.github.io/graphpype/how_to_wrap.html
https://neuropycon.github.io/graphpype/how_to_wrap.html
https://github.com/neuropycon/neuropycon_demo.git
https://github.com/neuropycon/neuropycon_demo.git


D. Meunier et al. NeuroImage 219 (2020) 117020
environmental artifacts and compensate for head movements. We used
these data as input of our preprocessing pipeline (pipeline #1). Since we
want to study event-related fields, a bandpass filter was applied to the
data between 0.1 and 40 Hz, without downsampling. The pipeline #1
also runs an ICA decomposition on filtered data to remove cardiac and
ocular artifacts. The names of EoG and ECG channels, the number of ICA
components specified as a fraction of explained variance (0.999) and a
reject dictionary to exclude time segments were set in the json parameter
file. While in Jas et al. (2018) the ICA solution is used to directly remove
the bad components from epoched data, we perform this operation on the
unsegmented data. However, due to the linearity of ICA operation, this
does not affect the results.
4.3. Extracting events

For the sake of reproducibility, following Jas et al. (2018) we use an
auxiliary NeuroPycon node (concat_event, see Fig. 4) to (i) extract the
events from the stimulus channel ‘STI101’ and (ii) concatenate the six
different runs for each subject. The output of this node is the input of the
source reconstruction pipeline described below.
4.4. Source estimate

Fig. 4 shows the graph corresponding to the source reconstruction
pipeline (pipeline #2). Before running this pipeline, the coregistration
between the MRI and MEG device needs to be performed. As highlighted
in the section describing the source reconstruction pipeline, this is the
only manual step before using the pipeline and it represents a critical step
to obtain a good localization accuracy. Similarly to Jas et al. (2018), we
used the coregistration file provided by Wakeman and Henson (2015).
The coregistration file is used in the LF_computation node where the
source space and eventually the BEM surfaces are also created. As source
space, we choose a dipole grid located in the cortical mantle. By setting in
the json file ‘oct-6’ for the ‘spacing’ parameter leads to around 8196
vertices in the source space for each subject. Since we are analyzing MEG
data a single layer head model with only the inner skull surface is suf-
ficient for the BEM computation. The noise covariance matrix is esti-
mated from 200 ms of prestimulus data. Since we want to do source
estimation in three different conditions (famous faces, unfamiliar faces
and scrambled), we provided all information related to the events in the
json file. We also specified as inverse method dSPM that was one of the
inverse methods used by Jas and colleagues. Finally, in the morph_stc
node (Fig. 4) the output of the inverse solution pipeline, i.e. the recon-
structed neural time series is morphed to the standard FreeSurfer average
subject named fsaverage.
6 http://pysurfer.github.io/.
7 https://wiki.python.org/moin/PyQt.
4.5. Comparison

Fig. 5 (right) shows group average of dSPM solutions for the contrast
between both types of faces together and scrambled at 170 ms post-
stimulus. The image was produced by subtracting normalized solutions
of faces to the ones of scrambled. The results are similar to the ones
obtained by Jas and colleagues (Fig. 5, left).

We also measured the computational time needed to compute ICA by
MNE and NeuroPycon with the aim to see the performance benchmarks
of running MNE python in NeuroPycon versus in pure python. While the
parallel library used by Jas and colleagues leads to a computational time
comparable with the one obtained by using NeuroPycon, one of the main
advantages provided by NeuroPycon is related to the caching provided
by Nipype engine that stores intermediate files and recomputes only
those nodes which do not have a cache. This has a significant impact on
the speed of the analyses mainly if some error occurs in the analysis of
some subjects. Furthermore, another advantage of Nipype engine is the
ability to easily switch from MultiProc (i.e. multiproc computer) to
queuing cluster systems such as SGE or SLURM.
8

5. Postprocessing connectivity and graph-theoretical metrics

5.1. Gathering results

The output of a NeuroPycon pipeline results in a specific directory
architecture, where all the results of each iteration are sorted by nodes. A
post-processing step allows us to gather results in a handy way for sub-
sequent statistical analyses and further result representation and visual-
ization. For the graph-metrics computed via graphpype, the most
straightforward way is to gather graph-based results in a dataframe, for
further processing outside in Excel (TM) or R. The postprocessing tools
allowing for generic post-processing steps can be found in the “gather”
directory of ephypype and graphpype.

5.2. Statistical analyses

Within NeuroPycon, it is possible to conduct group-level statistics in
several ways. Any current or future statistical analysis functions available
through tools wrapped by NeuroPycon are automatically available for
use in NeuroPycon pipelines (e.g. all statistical analyses provided byMNE
python). Additionally, the graphpype package offers several functions to
compute statistics on connectivity and graph data. These include
assessing statistical significance by computing parametric tests (paired
and unpaired t-test, binomial, Mann-Whitney, etc.) between groups of
matrices or vectors. Of course, with the increasing number of dimensions
we also need to address the multiple comparison problem. It is possible to
compute several levels of significance accounting for multiple compari-
sons, tailored for connectivity and graph metrics: For instance, a False
Positive metric (1/#of tests) has been suggested to be an acceptable
threshold when hundreds or even thousands of nodes are at play (Bassett
and Lynall, 2013). Other implemented tools include False Discovery Rate
(Benjamini and Hochberg, 2000; Hyvarinen, 1999) and Bonferroni
correction. An alternative approach is of course to implement
non-parametric permutation testing over mean connectivity matrices.
The time-consuming steps of permutation computing here critically
benefit from the parallelization available in NeuroPycon (via Nipype
engine). A reasonable number of computations (e.g. 1000) can be ach-
ieved in a relatively short time (a few hours for the full network pipeline
computation, including modular decomposition, assuming typical
network sizes of ~100 nodes). The gather_permuts module of graphpype
package in the “gather” directories offer a range of functions allowing for
computation of the corresponding p-values.

5.3. Visualization tools (graphpype, visbrain)

Numerous tools can be used to visualize the results and data
computed by or manipulated within NeuroPycon. One option is to use
visualization tools currently used within MNE python, such as pysurfer6

and mayavi (Ramachandran and Varoquaux, 2011), as well as a more
recent implementation using PyVista (Sullivan and Kaszynski, 2019). An
example of visualization provided by MNE python is shown in Fig. 3
containing the output of preprocessing pipeline, i.e. the topographies and
time series of the ICA components. Another more recent option to visu-
alize the results is to use visbrain (http://visbrain.org), a python based
open-source software dedicated to the visualization of neuroscientific
data (Combrisson et al., 2019). It is built on top of PyQt7 and VisPy
(Campagnola et al., 2015), a high-performance visualization library that
leverages the Graphics Processing Units (GPU). Below we describe
visualization procedures for different data generated with NeuroPycon
using visbrain (pysurfer and mayavi descriptions can be found
elsewhere).

The functions of Visbrain are not wrapped as nodes, as Visbrain is

http://visbrain.org
http://pysurfer.github.io/
https://wiki.python.org/moin/PyQt


Fig. 5. Group average on source reconstruction with dSPM obtained by Jas et al., (2018) (Left) and using NeuroPycon pipelines (Right) (see analysis implementation
and details in Section 4).

Fig. 6. (A) The spectral power pipeline
computes single-trial and mean PSD for
each selected frequency band. Here we
show illustrative results of computing
alpha power running the NeuroPycon
power pipeline template on the sample
MEG data. The size and color of each
sensor vary with the alpha power value.
The script used to generate this figure is
provided in the documentation website:
https://neuropycon.github.io/ephypyp
e/auto_examples/plot_power.html. (B)
The connectivity pipeline performs con-
nectivity analysis in sensor or source
space. Here we show illustrative results
obtained using the connectivity pipeline
to compute coherence between MEG
sensors in alpha band. Connectivity
edges are colored according to the
strength of the connection, while the
node size and color depend on the
number of connections per node. These
results are obtained by running the ex-
amples script in the documentation
webpage: (https://neuropycon.github.io
/ephypype/auto_examples/plot_co
nnectivity.html.

D. Meunier et al. NeuroImage 219 (2020) 117020
conceptually used as post-processing steps outside of NeuroPycon. In the
future, Visbrain capabilities may be used in standardized reports if the
need arises.

5.3.1. Visualization of sensor-space data
Fig. 6 uses the source object (SourceObj) class of visbrain that al-

lows to represent MEG sensors and assign additional data values to
each one of them. One available option is to represent the input data
(i) through a color bar and (ii) a marker radius proportional to its
amplitude. Fig. 6A depicts the output of the spectral power pipeline
(see section 3.3), where the PSD was computed in sensor-space over
three different frequency bands (theta, alpha and beta). Here we show
the results on alpha band. By contrast, Fig. 6B is generated using the
source object class together with the visbrain’s connectivity object
(ConnectObj) used to draw connectivity lines between nodes. Here we
9

show the results of the connectivity pipeline, i.e. the sensor-level
connectivity matrix obtained by computing the coherence among
MEG sensors in alpha band.

5.3.2. Visualization of source space data
To achieve 3D brain visualizations, the output data resulting from the

different pipelines (power, connectivity, inverse solution and graph) can be
interfaced with the Brain module of Visbrain (http://visbrain.org/brain.h
tml) that can be used to visualize the estimated source activity, connectiv-
ity results, PSD on source space, and graph analysis results. Illustrative
figures that canbeproducedby theBrainmodule are shown inFigs. 7 and8.
Fig. 7 shows the output of the inverse solution pipeline, i.e. the recon-
structedneural activity in eachROI of a user-definedatlas (Desikan-Killiany
Atlas) at a given time point. Fig. 8 shows a graph obtained for alpha band
after computing functional connectivitybetweenall pairs of regions starting

http://visbrain.org/brain.html
http://visbrain.org/brain.html
https://neuropycon.github.io/ephypype/auto_examples/plot_power.html
https://neuropycon.github.io/ephypype/auto_examples/plot_power.html
https://neuropycon.github.io/ephypype/auto_examples/plot_connectivity.html
https://neuropycon.github.io/ephypype/auto_examples/plot_connectivity.html
https://neuropycon.github.io/ephypype/auto_examples/plot_connectivity.html


Fig. 7. Here we show the output of the inverse solution pipeline, i.e. the
reconstructed neural activity at a given time point, in ROIs from a user defined
atlas (Desikan-Killiany Atlas). The results are obtained by running the example
script in the documentation webpage (https://neuropycon.github.io/ephypype
/auto_examples/plot_inverse.html).

Fig. 8. Representation of a graph obtained from resting-state MEG data for
alpha band (left part ¼ seen from left; right part ¼ seen from top) after
computing functional connectivity between all pairs of regions (Fig. 7). The
graph is obtained by retaining the 5% highest coherence values. The results of
modular decomposition are displayed with the same color for the edges between
two nodes in the same module, and in grey for edges between nodes belonging
to different modules. Two representations of the same results are displayed: with
modules (panel A), and with modules and node roles definition of Meunier et al.
(2009) as the shape (square ¼ connector) and size (bigger shape ¼ hub) of the
nodes (panel B). In the lower part, inter-modular edges are represented in grey.
From a given size in decreasing order, modules are all represented in black.

D. Meunier et al. NeuroImage 219 (2020) 117020
from the ROI estimated time series computed by the inverse solution
pipeline. The graph is obtained after thresholding at 5% highest coherence
values.

6. NeuroPycon command line interface (CLI)

As previously mentioned, the construction of neuropycon data pro-
cessing pipelines is done in a python script specifying the affinity and
arguments of the processing nodes and the source of input data. Such
scripts can be distributed, shared and reused later, which facilitates
reproducibility and results sharing. However, this can arguably some-
times be tedious if we want to construct and run simple pipelines quickly.
To address this problem, we’ve provided neuropycon with a Command
Line Interface (CLI) which is provided in the ephypype package. Indeed,
at the moment the command line interface wraps only some of the
functionality of the ephypype package only but will be expanded in the
future.

CLI is aimed at building the processing workflows on the fly
leveraging the UNIX shell wildcards mechanism for flexible input spec-
ification (Fig. 8). It wraps the processing nodes of ephypype together
with their options and arguments exposing to the end user a sub-
command for each node. Specifying these subcommands in order, the
user in effect chooses the desired processing steps which are assembled
together into the nipype workflow at the command invocation. More
precisely, we provide the terminal command neuropycon which is fol-
lowed by the sequence of subcommands corresponding to the desired
processing nodes with specified options and arguments for each. This
chain of subcommands to neuropycon determines the specific form of the
processing pipeline we want to apply to our data.

In practice, the use of the neuropycon terminal command looks like
the example shown in Fig. 9, where a sequence of commands segments
the data into 1 s epochs, converts them to Numpy format and computes
the default connectivity measure in the 8–12 Hz frequency band.

The command can be split into three functional blocks. First goes the
command name neuropycon. Then it is followed by a chain of processing
subcommand for each of which we specify options and arguments unique
to each processing node. In the example depicted in Fig. 9, the supplied
processing subcommands are epoch, ep2npy and conn,which perform data
epoching, conversion to NumPy format and spectral connectivity
10
computations. The last block is always the input specification. Although
the input node really goes first in the stream of data processing, putting
the input specification to the rightmost position of the composite com-
mand allows us to specify an arbitrary number of input files to the
pipeline which is beneficial when working with wildcards matching.

The input block always starts with the input subcommand and is fol-
lowedbya list offile pathsweare applying the processing pipeline to. In the
example shown in Fig. 9, the list of files is specified using the UNIX wild-
cardsmatchingmechanism and can be spelled out as ‘Go to each subfolders
of the NeuroPyConData folder and take all the ‘.fif’ files contained in it’
(here we presume that there’s only one level of nesting inNeuroPyConData
folders structure, i.e.files are organized according to the following scheme:
NeuroPyConData/<SubjectName>/<subject_data.fif>).

Integration with the UNIX wildcards pattern matching is one of the
biggest strengths of the supplied CLI since it allows for flexible and
concise fetching of files in the nested folders hierarchy given that these
folders are organized in a regular andwell-defined fashion, which is often
the case for electrophysiological datasets. A more detailed explanation of
the command line interface operation principles and examples can be
found on the documentation webpage (https://neuropycon.github.io
/ephypype/cli.html#neuropycon-cli).

7. Strengths of NeuroPycon and advantages of its Nipype-based
framework

NeuroPycon is based on the Nipype engine and fully adheres to its
architecture and global software philosophy. In this section, we will here
briefly summarize the rationale and key components of Nipype, and then

https://neuropycon.github.io/ephypype/cli.html#neuropycon-cli
https://neuropycon.github.io/ephypype/cli.html#neuropycon-cli
https://neuropycon.github.io/ephypype/auto_examples/plot_inverse.html
https://neuropycon.github.io/ephypype/auto_examples/plot_inverse.html


Fig. 9. Example of the CLI command computing connectivity metrics on a group of files. This command grabs all the.fif files in the two-level nested folder structure,
creates 1-s epochs from them, converts the epochs to NumPy arrays format, performs a default connectivity metrics calculation -between 8-12 Hz-on the converted
data and saves the results.

D. Meunier et al. NeuroImage 219 (2020) 117020
outline the strengths and added-value that NeuroPycon brings to the
community through this architecture.

7.1. Nipype in a nut-shell

Nipype is an open-source, community driven, python-based software
package that enables interactions between existing neuroimaging soft-
ware in a common framework and uniform semantics (Gorgolewski et al.,
2015). The design of workflows using Nipype allows for intuitive and
tractable implementations of even quite complex processing pipelines. To
appreciate concrete advantages that NiPype confers to NeuroPycon, it is
useful to briefly overview Nipype’s three main components: (I) Interfaces
to external tools that provide a unified way for setting inputs, executing
and retrieving outputs. The goal of Interfaces is to provide a uniform
mechanism for accessing analysis tool from neuroimaging software
packages (e.g. Freesurfer, FSL, SPM, etc). (II) A workflow engine allows to
create analysis pipelines by connecting inputs and outputs of interfaces as
a directed acyclic graph (DAG). In order to be used in a workflow the
Interfaces have to be encapsulated in node objects that execute the un-
derlying Interface in their own uniquely named directories, thus
providing a mechanism to isolate and track the outputs resulting from the
Interface execution. Nodes can be connected together within a workflow:
by connecting the outputs of some node to input of another one, the user
implicitly specifies dependencies. Furthermore, workflow can itself be a
node of the workflow graph. Nodes provides also an easy way to
implement function defined by the user. (III) A plug-in executes a
workflow either locally or in a distributed processing environment. No
changes are needed to the workflow to switch between these execution
modes. The user simply calls the workflow run function with a different
plug-in and its arguments.

7.2. NeuroPycon’s main assets and advantages

7.2.1. Multiprocessing
The implementation of multiprocessing is very easy, and can be either

made for multi-processing on a same machine with multiple cores
(Multiproc plugin) or a cluster with multiple machines in parallel (q-sub/
ipython plugin). In addition to substantially speeding up the computa-
tions for a planned analysis, the ability to easily launch multiprocessing
computations also encourages users to rapidly test and compare different
analyses options (e.g. various preprocessing strategies, or different
source localization methods, or even optimizing parameter selection,
such as matrix thresholding or graph construction, or frequency band
choices, etc.). Easy definition of multiprocessing is also an advantage
over Matlab-based scripting when it comes to handling big datasets.
While multiprocessing exists in Matlab its implementation requires spe-
cific coding, whereas in NeuroPycon the exact same code is used for both
sequential and parallel processing, except for one line that specifies the
option.

7.2.2. Caching

Thanks to the use of Nipype, NeuroPycon stores intermediate files,
and tests if the source code of each node has been modified. Hence, if
11
a part of the pipeline is modified, only the modified parts will be
recomputed. This has a significant impact on the speed of the
analyses.

7.2.3. Report
Each node of the workflow creates a subfolder (under the workflow

directory) called _report containing a text file (report.rst) with all rele-
vant node information, i.e. the name of the node, the input and output
parameters, the computational time to execute the node.

7.2.4. Choices and interaction between multiple software tools
It is not uncommon in the literature to see that graph analysis of EEG

or MEG data is achieved by combining distinct independent software
tools (e.g exporting connectivity data from one of the MEG/EEG analysis
toolboxes available to a functional connectivity software such as the
Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010)). By
contrast, NeuroPycon provides a unified framework with seamless in-
teractions between tools allowing to compute graph properties starting
from raw MEG/EEG data.

7.2.5. Expandability
It should be noted that the general « wrapping » concept makes it

possible to expand NeuroPycon’s workflows to include software combi-
nations other than those currently proposed. Extending the currently
available functionalities to wrap other software packages is in theory
reasonably straightforward. The biggest challenge is to ensure the
compatibility of format between the packages and to code the corre-
sponding converters. To illustrate the steps associated with wrapping
new functions from other packages into NeuroPycon, we provide (i) a
tutorial (see the graphype documentation) on how to wrap a single
function (Kcore computation of the Brain Connectivity Toolbox), which
is a metric available in BCT but not in Radatools, and integrate it in a
simple pipeline: https://neuropycon.github.io/graphpype/how_to
_wrap.html#how-to-wrap and (ii) an example on how to create a work-
flow connecting a Node that wraps a function of a Matlab toolbox (e.g.
FieldTrip) with a Node that wraps a function of a python toolbox (e.g.
MNE): https://neuropycon.github.io/ephypype/auto_examples/run_fie
ldtrip_wf.html.

On the other hand, the compatibility is readily guaranteed if the aim
is to include in NeuroPycon a new pipeline based on an algorithm already
implemented in a software wrapped by NeuroPycon (e.g. MNE python or
radatools). For example, adding a source reconstruction pipeline using
Linear Constrained Minimum Variance beamformer (Van Veen et al.,
1997) as inverse method is possible via a small modification of the
ephypype package (not more than ten lines of code). This type of
extension is also illustrated in NeuroPycon’s online documentation, see
for example: https://neuropycon.github.io/ephypype/tutorial/lcmv.h
tml.

7.2.6. Multimodal analysis
NeuroPycon also provide an advantageous framework for multimodal

analyses (e.g. combining electrophysiological and neuroimaging data).
Indeed, in addition to its own pipelines, NeuroPycon can benefit from the
interfaces already made available for neuroimaging analysis via Nipype.

https://neuropycon.github.io/graphpype/how_to_wrap.html#how-to-wrap
https://neuropycon.github.io/graphpype/how_to_wrap.html#how-to-wrap
http://www.fieldtriptoolbox.org/
https://mne.tools/stable/index.html
https://neuropycon.github.io/ephypype/auto_examples/run_fieldtrip_wf.html
https://neuropycon.github.io/ephypype/auto_examples/run_fieldtrip_wf.html
https://neuropycon.github.io/ephypype/tutorial/lcmv.html
https://neuropycon.github.io/ephypype/tutorial/lcmv.html


D. Meunier et al. NeuroImage 219 (2020) 117020
For example, since the latter wraps most of the functions available in
Freesurfer (Dale et al., 1999), MRI segmentation and parcellation, and
subsequent MEG source space processing can all be completed with a
single reproducible, light-weight and shareable NeuroPycon pipeline.

7.2.7. Open-source, readability and reproducibility
Because it is written in python, the NeuroPycon code is compact and

highly readable. In addition, python is free (which is not the case of other
high-level scientific languages such as Matlab). As a result, NeuroPycon is
a freely accessible tool that can be readily used by students and re-
searchers across the globe without the need to purchase commercial
software. Being open source, NeuroPycon promotes pipeline sharing and
enhances reproducibility in an open-science mind set.

8. Relationship to other toolboxes

NeuroPycon is not an alternative toolbox designed to replace or
compete with existing software. On the contrary, the strength of Neu-
roPycon is that it builds upon existing tools and brings them into a uni-
fying framework, through the Nipype engine. This has several immediate
advantages over individual toolboxes: (1) NeuroPycon can be used to
compare results of using different algorithms from different existing
toolboxes (e.g. wrapping MNE, brainstorm, SPM and fieldtrip, into a
single NeuroPycon pipeline allows for simple and direct comparison of
source estimation -implemented in distinct toolboxes-in a common
framework), (2) NeuroPycon pipelines can be very exhaustive, including
all processing steps needed to go from raw data (functional and struc-
tural) to group-level statistics of source-space connectivity and graph-
theoretical analyses. Because each pipeline is associated with a share-
able parameter file with all the parameters for all the nodes, the whole
analysis can easily be replicated. (3) The unifying framework of Neuro-
Pycon also provides an ideal environment for multimodal fusion. For
example, the graph package can be used with fMRI and MEG or EEG data
from the same individuals and provides a practical framework to
compare or integrate data from different brain imaging modalities, (4) A
further advantage of NeuroPycon, compared to other available individual
tools, is that it benefits from Nipype’s efficient computing functionalities,
such as embedded multi-threading for parallel processing and caching,
which is very useful when it comes to data sets of large cohorts, (5) In
addition to benefiting from the known advantages of Python, the fact that
all the analyses happen in a single programming environment means that
the user does not need to be familiar with different languages that the
tools are programmed in, and (6) Finally, because NeuroPycon integrates
available open tools, all improvements and new functionalities that are
added to these toolboxes, will be readily available to NeuroPycon and so
NeuroPycon’s strength will continually grow as the individual toolboxes
continue to improve.

In sum, rather than being a competitor to existing software, Neuro-
Pycon allows the community to benefit from the strengths of existing
tools in a common open and computationally efficient framework
designed to facilitate method comparison, sharing and replication of
results.

9. Discussion

NeuroPycon is an open-source analysis kit which provides python
pipelines for advanced multiprocessing of multi-modal brain data. It
consists of two primary, complementary components: ephypype, which
facilitates preprocessing and source localization pipelines; and graph-
pype, which integrates spectral and functional connectivity pipelines, as
well graph analysis pipelines. NeuroPycon is based on the Nipype engine
and inherits thereby its philosophy of wrapping multiple established
processing software tools into a common data analysis framework. The
use of NeuroPycon allows for portability, simplified code exchange be-
tween researchers, and reproducibility of the results by sharing analysis
scripts.
12
Additionally, conducting graph-theoretical analysis in NeuroPycon
allows for comparing and merging graph results from different imaging
modalities and different toolboxes (which might be implemented in
different programming languages).

NeuroPycon is designed for users with a reasonable knowledge of the
software tools that it can wrap. But who would like to benefit from
automatic implementation (ready-to-use pipelines) of features that
would be otherwise more complex (or impossible) to implement. Parallel
processing and caching are features that are particularly powerful and
convenient when it comes to large data sets. NeuroPycon could also
become very valuable for users who want to process multimodal data
(e.g. MEG and fMRI) in a unified framework. Last but not least, students
and researchers will hopefully find NeuroPycon to be a convenient
framework to easily share MEG/EEG analysis pipelines.

In terms of ongoing and future development, we plan-among other
things-to make NeuroPycon BIDS-compatible so that the inputs are BIDS
datasets and the intermediate outputs comply with the upcoming BIDS
derivative specification. Also, because the Nipype engine provides an
important backbone to NeuroPycon, we hope to work closely with the
Nipype community in the future, especially as NeuroPycon evolves and
expands its functionalities. One of the current shortcomings is the limited
packages that have so far been wrapped. Hopefully, the community of
NeuroPycon users and developers will continue to expand, and thus in-
crease its functionalities and range of pipelines available.

CRediT authorship contribution statement

David Meunier: Software, Visualization, Methodology, Conceptual-
ization, Validation, Writing - original draft. Annalisa Pascarella: Soft-
ware, Visualization, Methodology, Conceptualization, Validation,
Writing - original draft. Dmitrii Altukhov: Software, Methodology,
Conceptualization, Validation, Writing - review & editing. Mainak Jas:
Conceptualization, Validation, Writing - original draft. Etienne Com-
brisson: Validation, Writing - review & editing. Tarek Lajnef: Valida-
tion. Daphn�e Bertrand-Dubois: Investigation. Vanessa Hadid:
Investigation. Golnoush Alamian: Investigation. Jordan Alves: Inves-
tigation. Fanny Barlaam: Investigation. Anne-Lise Saive: Investigation.
Arthur Dehgan: Validation. Karim Jerbi: Methodology, Conceptuali-
zation, Writing - original draft, Funding acquisition, Supervision, Project
administration.

Acknowledgements

AP was supported by a CNR short-term mobility grant. KJ was sup-
ported by funding from the Canada Research Chairs program and a
Discovery Grant (RGPIN-2015-04854) from the Natural Sciences and
Engineering Research Council of Canada, a New Investigators Award
from the Fonds de Recherche du Qu�ebec - Nature et Technologies (2018-
NC-206005) and an IVADO-Apog�ee fundamental research project grant.
This research is also supported in part by the FRQNT Strategic Clusters
Program (2020-RS4-265502 - Centre UNIQUE - Union Neurosciences &
Artificial Intelligence - Quebec).

References

Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.D., 2006. A resilient, low-
frequency, small-world human brain functional network with highly connected
association cortical hubs. J. Neurosci. 26 (1), 63–72.

Andersen, L.M., 2018. Group analysis in MNE-Python of evoked responses from a tactile
stimulation paradigm: a pipeline for reproducibility at every step of processing, going
from individual sensor space representations to an across-group source space
representation. Front. Neurosci. 12, 6.

Avants, B.B., Tustison, N., Song, G., 2009. Advanced normalization tools (ANTS). Insight
J. 2, 1–35.

Bassett, D.S., Lynall, M.E., 2013. Network methods to characterize brain structure and
function. Cognit. Neurosci.: Biol. Mind 1–27.

Benjamini, Y., Hochberg, Y., 2000. On the adaptive control of the false discovery rate in
multiple testing with independent statistics. J. Educ. Behav. Stat. 25 (1), 60–83.

http://refhub.elsevier.com/S1053-8119(20)30506-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref1
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref2
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref3
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref3
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref3
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref5
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref5
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref5


D. Meunier et al. NeuroImage 219 (2020) 117020
Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins, K.A., 2015. The PREP
pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinf. 9,
16.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

Campagnola, L., Klein, A., Larson, E., Rossant, C., Rougier, N.P., 2015. VisPy: harnessing
the GPU for fast, high-level visualization. In: Proceedings of the 14th Python in
Science Conference. Available at: https://hal.inria.fr/hal-01208191/. Accessed May
23, 2017.

Combrisson, E., Vallat, R., O’Reilly, C., Jas, M., Pascarella, A., Saive, A.L., et al., 2019.
Visbrain: a multi-purpose GPU-accelerated open-source suite for multimodal brain
data visualization. Front. Neuroinf. 13.

Cook, P.A., Bai, Y., Nedjati-Gilani, S.K.K.S., Seunarine, K.K., Hall, M.G., Parker, G.J.,
Alexander, D.C., 2006, May. Camino: open-source diffusion-MRI reconstruction and
processing. In: 14th Scientific Meeting of the International Society for Magnetic
Resonance in Medicine, vol. 2759. Seattle WA, USA, p. 2759.

Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic
resonance neuroimages. Comput. Biomed. Res. 29 (3), 162–173.

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation
and surface reconstruction. Neuroimage 9 (2), 179–194.

Dale, A.M., Liu, A.K., Fischl, B.R., Buckner, R.L., Belliveau, J.W., Lewine, J.D., Halgren, E.,
2000. Dynamic statistical parametric mapping: combining fMRI and MEG for high-
resolution imaging of cortical activity. Neuron 26 (1), 55–67.

Gilmore, R.O., Diaz, M.T., Wyble, B.A., Yarkoni, T., 2017. Progress toward openness,
transparency, and reproducibility in cognitive neuroscience. Ann. N. Y. Acad. Sci.
1396 (1), 5–18. https://doi.org/10.1111/nyas.13325.

Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L.,
Ghosh, S.S., 2011. Nipype: a flexible, lightweight and extensible neuroimaging data
processing framework in Python. Front. Neuroinf. 5, 13. https://doi.org/10.3389/
fninf.2011.00013.

Gorgolewski, K.J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S.S., Maumet, C., et al.,
2015. NeuroVault. org: a web-based repository for collecting and sharing
unthresholded statistical maps of the human brain. Front. Neuroinf. 9.

Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., et al., 2016.
The brain imaging data structure, a format for organizing and describing outputs of
neuroimaging experiments. Sci. Data 3, 160044.

Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M., 2010. OpenMEEG: opensource
software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9 (1), 45.

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C.,
Goj, R., Jas, M., Brooks, T., Parkkonen, L., H€am€al€ainen, M., 2013. MEG and EEG data
analysis with MNE-Python. Front. Neurosci. 7, 267. https://doi.org/10.3389/
fnins.2013.00267.

Guimera, R., Mossa, S., Turtschi, A., Amaral, L.N., 2005. The worldwide air transportation
network: anomalous centrality, community structure, and cities’ global roles. Proc.
Natl. Acad. Sci. Unit. States Am. 102 (22), 7794–7799.

H€am€al€ainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993.
Magnetoencephalography—theory, instrumentation, and applications to noninvasive
studies of the working human brain. Rev. Mod. Phys. 65 (2), 413.

Hyvarinen, A., 1999. Fast ICA for noisy data using Gaussian moments. In: ISCAS’99.
Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI
(Cat. No.99CH36349). https://doi.org/10.1109/iscas.1999.777510.

Jas, M., Larson, E., Engemann, D.A., Lepp€akangas, J., Taulu, S., H€am€al€ainen, M.,
Gramfort, A., 2018. A reproducible MEG/EEG group study with the MNE software:
recommendations, quality assessments, and good practices. Front. Neurosci. 12, 530.
https://doi.org/10.3389/fnins.2018.00530.

Lin, F.H., Witzel, T., Ahlfors, S.P., Stufflebeam, S.M., Belliveau, J.W., H€am€al€ainen, M.S.,
2006. Assessing and improving the spatial accuracy in MEG source localization by
depth-weighted minimum-norm estimates. Neuroimage 31 (1), 160–171.
13
Meunier, D., Achard, S., Morcom, A., Bullmore, E., 2009. Age-related changes in modular
organization of human brain functional networks. Neuroimage 44 (3), 715–723.

Newman, M.E., 2004. Fast algorithm for detecting community structure in networks.
Phys. Rev. 69 (6), 066133. E.

Niso, G., Gorgolewski, K.J., Bock, E., Brooks, T.L., Flandin, G., Gramfort, A., et al., 2018.
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography.
Sci. Data 5, 180110.

Niso, G., Tadel, F., Bock, E., Cousineau, M., Santos, A., Baillet, S., 2019. Brainstorm
pipeline analysis of resting-state data from the open MEG archive. Front. Neurosci.
13.

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Comput. Intell. Neurosci., 156869, 2011.

Pascual-Marqui, R.D., 2002. Standardized low-resolution brain electromagnetic
tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24
(Suppl. D), 5–12.

Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E. (Eds.), 2011.
Statistical Parametric Mapping: the Analysis of Functional Brain Images. Elsevier.

Poldrack, R.A., Gorgolewski, K.J., 2017. OpenfMRI: open sharing of task fMRI data.
Neuroimage 144 (Pt B), 259–261.

Poline, J.-B., Breeze, J.L., Ghosh, S., Gorgolewski, K., Halchenko, Y.O., Hanke, M., et al.,
2012. Data sharing in neuroimaging research. Front. Neuroinf. 6, 9. https://doi.org/
10.3389/fninf.2012.00009.

Ramachandran, P., Varoquaux, G., 2011. Mayavi: 3D visualization of scientific data.
Comput. Sci. Eng. 13 (2), 40–51.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 52 (3), 1059–1069.

S�egonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B., 2004.
A hybrid approach to the skull stripping problem in MRI. Neuroimage 22 (3),
1060–1075.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-
Berg, H., et al., 2004. Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage 23, S208–S219.

Sullivan, C.B., Kaszynski, A., 2019. PyVista: 3D plotting and mesh analysis through a
streamlined interface for the Visualization Toolkit (VTK). J. Open Sources Software 4
(37), 1450.

Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: a user-
friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716.

Taulu, S., 2006. Spatiotemporal Signal Space Separation method for rejecting nearby
interference in MEG measurements. Phys. Med. Biol. 51, 1759–1769. https://
doi.org/10.1088/0031-9155/51/7/008.

Tournier, J.D., Calamante, F., Connelly, A., 2012. MRtrix: diffusion tractography in
crossing fiber regions. Int. J. Imag. Syst. Technol. 22 (1), 53–66.

Van Der Walt, S., Colbert, S.C., Varoquaux, G., 2011. The NumPy array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13 (2), 22.

Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain
electrical activity via linearly constrained minimum variance spatial filtering. IEEE
Trans. Biomed. Eng. 44 (9), 867–880.

Virtanen, P., Gommers, R., Oliphant, T.E., et al., 2020. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat. Methods 17, 261–272.

Wakeman, D.G., Henson, R.N., 2015. A multi-subject, multimodal human neuroimaging
dataset. Sci. Data 2. https://doi.org/10.1038/sdata.2015.1.

Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D., 2011. Large-scale
automated synthesis of human functional neuroimaging data. Nat. Methods 8 (8),
665.

http://refhub.elsevier.com/S1053-8119(20)30506-1/sref6
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref6
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref6
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref7
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref7
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref7
https://hal.inria.fr/hal-01208191/
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref9
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref9
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref9
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref10
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref11
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref11
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref11
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref12
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref12
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref12
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref13
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref13
https://doi.org/10.1111/nyas.13325
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref17
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref17
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref17
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref18
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref18
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref18
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref19
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref19
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref21
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref22
https://doi.org/10.1109/iscas.1999.777510
https://doi.org/10.3389/fnins.2018.00530
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref25
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref26
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref26
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref26
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref28
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref28
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref29
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref30
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref30
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref30
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref31
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref31
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref31
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref32
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref32
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref32
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref32
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref33
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref33
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref34
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref34
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref34
https://doi.org/10.3389/fninf.2012.00009
https://doi.org/10.3389/fninf.2012.00009
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref37
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref37
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref37
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref38
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref39
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref41
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref41
https://doi.org/10.1088/0031-9155/51/7/008
https://doi.org/10.1088/0031-9155/51/7/008
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref43
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref43
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref43
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref44
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref44
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref45
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref45
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref45
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref45
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref46
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref46
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref46
https://doi.org/10.1038/sdata.2015.1
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref48
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref48
http://refhub.elsevier.com/S1053-8119(20)30506-1/sref48

	NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines
	1. Introduction
	2. Pipeline design, data structure and analysis workflow
	2.1. Overview
	2.1.1. Description
	2.1.2. Software download, free license and documentation
	2.1.3. Unit tests, continuous integration and python coding standards

	2.2. NeuroPycon packages
	2.2.1. Ephypype
	2.2.2. Graphpype

	2.3. Data import

	3. Presentation of the main pipelines
	3.1. Data preprocessing pipeline (ephypype) [pipeline #1]
	3.2. Source reconstruction pipeline (ephypype) [pipeline #2]
	3.3. Spectral power pipeline (ephypype) [pipeline #3]
	3.4. Spectral connectivity pipeline (ephypype) [pipeline #4]
	3.5. Functional connectivity analysis (graphpype) [pipeline #5]
	3.6. Graph-theoretical analyses pipeline (graphpype) [pipeline #6]

	4. Validation of NeuroPycon group analysis using previously published work on open data
	4.1. Cortical segmentation
	4.2. MEG data processing and independent component analysis (ICA)
	4.3. Extracting events
	4.4. Source estimate
	4.5. Comparison

	5. Postprocessing connectivity and graph-theoretical metrics
	5.1. Gathering results
	5.2. Statistical analyses
	5.3. Visualization tools (graphpype, visbrain)
	5.3.1. Visualization of sensor-space data
	5.3.2. Visualization of source space data


	6. NeuroPycon command line interface (CLI)
	7. Strengths of NeuroPycon and advantages of its Nipype-based framework
	7.1. Nipype in a nut-shell
	7.2. NeuroPycon’s main assets and advantages
	7.2.1. Multiprocessing
	7.2.2. Caching
	7.2.3. Report
	7.2.4. Choices and interaction between multiple software tools
	7.2.5. Expandability
	7.2.6. Multimodal analysis
	7.2.7. Open-source, readability and reproducibility


	8. Relationship to other toolboxes
	9. Discussion
	CRediT authorship contribution statement
	Acknowledgements
	References


