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Sleep spindles and K-complexes are among the most prominent micro-events observed
in electroencephalographic (EEG) recordings during sleep. These EEG microstructures
are thought to be hallmarks of sleep-related cognitive processes. Although tedious and
time-consuming, their identification and quantification is important for sleep studies
in both healthy subjects and patients with sleep disorders. Therefore, procedures for
automatic detection of spindles and K-complexes could provide valuable assistance
to researchers and clinicians in the field. Recently, we proposed a framework for
joint spindle and K-complex detection (Lajnef et al., 2015a) based on a Tunable
Q-factor Wavelet Transform (TQWT; Selesnick, 2011a) and morphological component
analysis (MCA). Using a wide range of performance metrics, the present article provides
critical validation and benchmarking of the proposed approach by applying it to
open-access EEG data from the Montreal Archive of Sleep Studies (MASS; O’Reilly
et al., 2014). Importantly, the obtained scores were compared to alternative methods
that were previously tested on the same database. With respect to spindle detection,
our method achieved higher performance than most of the alternative methods.
This was corroborated with statistic tests that took into account both sensitivity and
precision (i.e., Matthew’s coefficient of correlation (MCC), F1, Cohen κ). Our proposed
method has been made available to the community via an open-source tool named
Spinky (for spindle and K-complex detection). Thanks to a GUI implementation and
access to Matlab and Python resources, Spinky is expected to contribute to an
open-science approach that will enhance replicability and reliable comparisons of
classifier performances for the detection of sleep EEG microstructure in both healthy
and patient populations.
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INTRODUCTION

Ironically, a good night’s rest is often made possible by an
active brain that exhibits complex macro and micro-structures
of electrical activity at various spatial and temporal scales (Iber
et al., 2007; Carskadon and Dement, 2011). Characteristic sleep
stages are generally identified in 20 s or 30 s-long segments
of physiological activity recorded with polysomnographic
data, including prominently electroencephalographic signals
(EEG). Sleep stages can be broadly split into four types:
rapid-eye-movement (REM) and three non-REM (N1, N2,
N3) (Rechtschaffen and Kales, 1968; Iber et al., 2007), and
each stage is associated with specific cerebral signatures
and functions. Furthermore, sleep EEG recordings contain
characteristic micro-structures (i.e., short-lived stereotypical
events) that are often considered to be hallmarks of sleep-
related cognitive processes and, in some cases, a sign of sleep
anomalies. Among these, K-complexes and sleep spindles are
some of the most prominent micro-events that are studied
in sleep studies. Given that they mainly occur during the
N2 sleep stage, spindles and K-complexes not only guide
experts during their scoring of sleep stages, but they are
also thought to be key elements in the diagnosis of sleep
disorders and the exploration of the functional role of
sleep.

Sleep Spindles
According to the American Academy of Sleep Medicine (AASM),
sleep spindles are distinct EEG waves within the 11–16 Hz
frequency range, they have a duration of ≥0.5 s, and they
typically show a peak in amplitude over central brain regions
(Iber et al., 2007). These waveforms have been shown to be
generated by the thalamus—more specifically by the reticular
nucleus, which acts as a pacemaker (Fuentealba and Steriade,
2005)—and they propagate to the cortex via thalamo-cortical
projections (e.g., Steriade, 2003, 2005; Barthó et al., 2014; Lüthi,
2014). Over the last years, spindles have been the subject
of many debates and a lot of research on the mechanisms
and functions of the sleeping brain. Sleep spindles play an
important role in memory consolidation during sleep (Schabus
et al., 2004; Morin et al., 2008; Diekelmann et al., 2009;
Diekelmann and Born, 2010; Barakat et al., 2011; Fogel et al.,
2012; Lafortune et al., 2014) and they undergo age-related
changes (e.g., Seeck-Hirschner et al., 2012; Martin et al.,
2013). Consequently, alterations in spindle density (number per
minute) can be a symptom of neurological disorders such as
dementia (e.g., Ktonas and Ventouras, 2014; Latreille et al.,
2015), schizophrenia (e.g., Ferrarelli et al., 2010; Ferrarelli and
Tononi, 2011), depression (Riemann et al., 2001), REM sleep
behavior disorder (O’Reilly et al., 2015), Parkinson’s disease
(Christensen et al., 2015; Latreille et al., 2015), stroke recovery,
mental retardation and sleep disorders (De Gennaro and Ferrara,
2003).

K-Complexes
K-complexes are well delineated negative sharp waves that are
immediately followed by a positive component. Their total

duration is of ≥0.5 s, and they typically peak in amplitude over
frontal electrodes (Iber et al., 2007). The role of K-complexes
in sleep is however still a matter of debate. Since they are often
followed by micro-awakenings (Halász, 2005), they are often
considered to be an arousal response. Moreover, some studies
suggest that K-complexes have a sleep ‘‘protection’’ function
(Jahnke et al., 2012). Lastly, single-unit recordings during human
sleep have suggested that K-complexes may represent isolated
down-states (Cash et al., 2009).

Spindle and K-Complex Detection
A reliable detection of sleep spindles and K-complexes in
EEG recordings is of major importance in numerous basic
and clinical sleep investigations. Visual annotation of sleep
spindles and K-complexes is tedious, time consuming, subjective
and prone to human errors. As a consequence, the inter-
rater agreement for visual spindles and K-complexes scoring
reported in the literature is remarkably low (Zygierewicz et al.,
1999; Devuyst et al., 2010; Warby et al., 2014). Therefore, just
like in sleep staging (e.g., Lajnef et al., 2015b), automatic or
semi-automatic procedures are expected to be of great utility for
the detection of sleep spindles and K-complexes. Straightforward
approaches based on band-pass filtering and thresholding have
been proposed for both spindles and K-complexes detection
(e.g., Huupponen et al., 2000; Devuyst et al., 2010). Other
techniques that have been proposed include template-based
filtering, using matching pursuit (e.g., Schönwald et al., 2006),
filtering approaches based on continuous wavelet transforms
(Erdamar et al., 2012) and signal classification methods based
on artificial neural networks (ANN; e.g., Günes et al., 2011),
Support Vector Machines (SVMs; e.g., Acir and Güzeliş ,
2004) or decision-trees (Duman et al., 2009). However, few
have investigated the detection of K-complexes and spindles
simultaneously using a common methodological framework
(Jobert et al., 1992; Koley and Dey, 2012; Jaleel et al., 2013;
Camilleri et al., 2014; Lajnef et al., 2015a; Parekh et al.,
2015).

Goal of This Study
In a recent study, we proposed a framework for joint spindle
and K-complex detection, based on the combination of a discrete
wavelet transform, known as the Tunable Q-factor Wavelet
Transform (TQWT; Selesnick and Bayram, 2009; Selesnick,
2011a,b,c) and morphological component analysis (MCA).
Appropriate Q-factor tuning allows for the decomposition of the
EEG signal into transient (K-complex) and oscillatory (spindle)
components. Our results from the sleep EEG recordings of
14 participants demonstrated that this framework could be a
promising tool to facilitate and improve the reliability of the
detection of spindles and K-complexes. This study extends
our previous work in three significant ways. First, we provide
critical validation and benchmarking of the TQWT-MCA
approach by applying it to an open-access database, namely the
Montreal Archive of Sleep Studies (MASS; O’Reilly et al., 2014).
Second, we extend on the performance measures by including
a wide range of metrics (sensitivity, positive predictive value
(PPV), Matthew’s coefficient of correlation (MCC), Cohen’s κ
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and the F1 measure). This is important for the comparisons
with other methods in the field. Finally, with the publication
of this report we provide an open-source version of the
software (which we coined Spinky for automatic spindle and
K-complex detection), and we describe all the processing steps
necessary for users to test on their data or replicate our
findings.

Article Outline
The article is organized as follows. We first describe the
open-access database that we used (‘‘Databases’’ Section). Next,
in Sections ‘‘Optimal Threshold Estimation and Detection’’, we
provide a thorough investigation of the threshold estimation step
(training phase of our algorithm), followed by a presentation
of the statistical assessment of detection results (‘‘Statistical
Assessment of Detection’’ Section). Section ‘‘Performance
Evaluation and Comparison with other Algorithms’’ provides the
links to the open-access Matlab-based toolbox and associated
Python (Jupyter) interactive notebook. In ‘‘Open Access’’
Sections, a user-oriented overview of the Matlab GUI software
is overviewed. The results section provides an assessment of
the robustness of the threshold estimation step (‘‘Evaluation of
the Detection Threshold Variability’’ Section), followed by the
results of the automatic detection of spindles and K-complexes
(‘‘Automatic Spindle and K-Complex Scoring with Spinky’’
Section). Finally, in Sections ‘‘Discussion’’, we discuss our results
and future work.

MATERIALS AND METHODS

Databases
To demonstrate the performance of the proposed detector
and facilitate comparisons with other methods, we chose to
examine its detection results on an open-access database:
MASS (O’Reilly et al., 2014). More specifically, we used the
second subset of the first cohort (C1/SS2). This contained
19 full night recordings of healthy young participants, all
scored for spindles and K-complexes by experts. Scoring was
performed on N2 epochs using the C3 derivation and a
linked-ear reference. As discussed in O’Reilly and Nielsen
(2015), the two experts for sleep spindles show relatively
low inter-rater agreement (a median Cohen κ of about 0.4)
owing to the fact that the first one scored spindles using
traditional AASM rules, whereas the second rater used an
approach similar to the one employed in Ray et al. (2010)1.
It is also worth noting that the second expert only scored
15 out of the 19 nights. Moreover, scoring of K-complexes
was performed with a minimal duration of 0.5 s and a
minimal peak-to-peak amplitude of 75 uV. The experts did not
score K-complexes during short-period N2 intrusions in REM
sleep.

1Broad-band EEG signals (0.35–35 Hz band) and sigma filtered signals
(11–17 Hz band) were both used in scoring to facilitate the identification
of short duration, small amplitude or obscured (e.g., by delta waves or
K-complexes) spindles. Thus, this second scoring is less ‘‘conservative’’ in the
sense that they report higher spindle density.

Optimal Threshold Estimation and
Detection
As described in Lajnef et al. (2015a), the TQWT-MCA approach
requires an initial training/calibration step, where a small subset
of the EEG data is visually scored for spindles or K-complexes,
and then used to derive an optimal detection threshold. Thus,
the operating point for the detection trade-off between type I and
type II classification errors depends on this a priori specification
of a detection threshold. The best value for such a threshold
is subject-dependent and can best be determined by assessing
it on a small subset of expert scorings (i.e., by training the
detector on this subset). To complement the analyses reported
in Lajnef et al. (2015a) and to improve our understanding of the
parameters affecting the choice of optimal detection conditions,
we performed two sets of trainings:

• Analysis 1: A random selection of 10 minutes of scoring
(i.e., 30 scoring pages of 20 s) was used to compute
the optimal detection threshold corresponding to each
expert scoring. This process was repeated 10 times and the
distribution of these thresholds was then estimated. The
first, second and third quartiles of these distributions were
entered as parameters for the detections associated with each
scoring.

• Analysis 2: We randomly chose a number N of 20 s scoring
pages. This N number was itself randomly drawn from
a uniform distribution spanning values from 15 to 120.
This process was repeated 60 times per expert scoring to
evaluate the impact of the number of scoring pages (i.e., of
N) on the variability of the estimated threshold, and also
to improve on the optimal number of pages that should
be scored by experts for a reliable automatic scoring of
the remaining pages. Thresholds determined on samples
associated with N within the 15–120 range were separated
in six bins of equal width, each containing an average of
10 samples per expert scoring. Then, the mean and the
standard deviation (SD) of these thresholds were computed
per scoring per bin. Standard least-square regressions were
computed to evaluate the impact of N on the expected
value of the threshold and on the reliability of the threshold
estimation. For spindles, an additional linear factor was
added to these regression models to take into account the
impact of the expert (i.e., choosing scoring by expert 1 or
expert 2 as ground truth). No interaction term between N
and the expert was used as it was not statistically significant
(p = 1.00 for means, p = 0.65 for SD).

Statistical Assessment of Detection
Detection performances were assessed using a sample-based
computation of the following statistics: sensitivity, PPV, MCC,
Cohen’s κ and the F1 measure. Details of this statistical approach
can be found in O’Reilly and Nielsen (2015). With respect to
K-complexes, the detector reported only on the position, and not
the duration, of the negative peak. Thus, for both the expert and
the detector scoring, the duration of a detected K-complex was
defined as the time window starting 0.1 s before and ending 1.3 s
after its negative peak.
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FIGURE 1 | Overview of the Spinky toolbox. Left: the main GUI used to
launch the required module. Right: snapshots of the three main modules
available with Spinky.

Performance Evaluation and Comparison
with Other Algorithms
An important advantage of using an open-access database is
the ability to benchmark the performance of a new algorithm
and compare it to other methods. After running Spinky on
the MASS data sets, we compared its performance to those of
other spindle detection algorithms published in the literature,
including a Teager detector (Ahmed et al., 2009), Sigma index
(Huupponen et al., 2000, 2007), RSP (Devuyst et al., 2011), RMS
(Mölle et al., 2002; all four assessed in O’Reilly and Nielsen,
2015), as well as a detector based on matching pursuit (MP;
Durka et al., 2015). The output of the different methods was
compared using the five metrics described in the previous section
(Sensitivity, PPV, MCC, Cohen’s κ and F1). These comparisons
were expected to be highly reliable as the same assessment
method, subject sample and expert scoring were used for all
cases.

We further compared our results with detectors that were
applied on the same database, but using slightly different
methods (e.g., TP, TN, FP and FN determined on time windows
instead of time samples) or using a sub-sample of subjects (e.g.,
excluding, for the computation of test statistics, subjects that were
used for training the detector). This second set included the eight
detectors A1–A8 that were tested in Tsanas and Clifford (2015),
a detector based on complex demodulation (CD; Ray et al., 2015)
and two detectors using random forest (RF) and ANN that were
assessed in Patti et al. (2015).

Open Access
To allow others to replicate our results or use our method on their
own data, we provide open-access code, GUIs and interactive
resources for the developed tools. The code used for assessing the
performance of the detector is available as a Jupyter (IPython)
notebook at https://github.com/christian-oreilly/spinkyDemo/
blob/master/notebook/finalDemo.ipynb. The database used for
spindle detection is freely available at http://www.ceams-
carsm.ca/en/MASS. The MATLAB (Mathworks Inc., MA, USA)
source code and GUIs for the detector can be downloaded at
https://github.com/TarekLaj/SPINKY.

Spinky: A Matlab GUI Interface for
Spindles and K-Complex Detection
The spindle and K-complex detection pipeline used in this
article has been implemented in a freely available toolbox
called Spinky. The MATLAB package contains three modules
allowing for: (i) visual K-complex and spindle scoring (on a
subset of data for training purposes); (ii) automatic detection;
and (iii) manual correction of false detections. In principle,
the output of the first module is used in the automatic
detection, and the result of this module is the input to the

FIGURE 2 | Spinky visual scoring module. Illustration of the module provided for visual scoring of K-complex and spindle events. The interface includes a select
event panel (spindles or K-complexes), and buttons to validate or cancel the scoring. Buttons for duration estimation, zoom and display of the scalogram are also
provided. A larger version of this figure is provided online (https://raw.githubusercontent.com/TarekLaj/SPINKY/master/Screenshots/Figure_2_Lajnef_et_al_
frontneuroinf_w2017.jpg).
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FIGURE 3 | Spinky automatic detection module. The detection mode panel allows the user to switch between two types of operations: manual entry of a
threshold for each event type, and deriving the optimal threshold via the ROC approach based on training samples of data. Detected events are shown in the panels
at the bottom of the interface. The time-frequency map can be hidden using the show/hide scalogram button. An “Export Results” menu at the top of the GUI allows
the user to export detection statistics. A larger version of this figure is provided online (https://raw.githubusercontent.com/TarekLaj/SPINKY/master/Screenshots/
Figure_3_Lajnef_et%20_al_frontneuroinf_2017.jpg).

FIGURE 4 | Spinky visual correction module: the results of the automatic detection module (previous step—Figure 3) can be manually corrected here.
Adding or removing events are both supported (see left and right corner panels). A larger version of this figure is provided online (https://raw.githubusercontent.
com/TarekLaj/SPINKY/master/Screenshots/Figure_4_Lajnef_et_al_frontneuroinf_2017.jpg).

third module (Figure 1). Once installed, the toolbox can be
launched by typing ‘‘spinky’’ in the MATLAB command window.
This will activate the main toolbox window (Figure 1—Left),
and allows to launch one of the three main modules. The
basic principles of how to use each module is described
below.

STEP 1: Visual Detection
This module (Figure 2) allows the user to manually mark
spindle and K-complex events on a single EEG channel. In
principle, this only needs to be done on a small sample of
data, as it will subsequently be used for training. To perform
the visual scoring the user needs to go through the following
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steps. First, the beginning and end of the event to score must
be marked by moving the blue (begin) and red (end) lines using
the mouse (drag and drop). Next, the user selects the event
type using radio buttons (on ‘‘Select event’’ panel). Clicking
the ‘‘Validate’’ button saves the results, and generates a text
file named ‘‘scorer_name_subject name_kcomplex.txt’’ and/or
‘‘scorer_name_subject name_spindles.txt’’. The user can then
move to the next/previous segment using the next/previous
arrow buttons, or move directly to a desired segment by entering
the segment number in the text box and clicking the ‘‘goto’’
button.

Note that if the desired detection threshold is already known,
or if the user wants to manually choose and experiment with
some threshold values, they can skip this visual scoring step and
start directly with the automatic detection module.

STEP 2: Automatic Detection
This module (Figure 3) runs an automatic detection
of spindles and K-complexes using the TQWT-MCA

method (Lajnef et al., 2015a). To run this module the user
must first load the single-channel EEG data and select the
required detection mode from the menu list.

Case 1
If the threshold value is already known (i.e., based on previous
training or the user wishes to set it manually), the user can
choose ‘‘Enter thresholds and run detection’’ mode. This will
launch the automatic detection, while skipping the training
step. Example values for the K-complex and spindle values are
−60 and 200, but these values can change depending on the
data.

Case 2
To determine the best threshold value using a visually scored
data sample, the user must select ‘‘Compute thresholds and run
detection’’. The user will be asked to choose the training EEG data
files and associated visual scoring files. In such a case, the visual
scoring file should either be the output of the Visual Scoring

FIGURE 5 | Box plots showing the distribution of the detection thresholds estimated from the training step (see analysis 1 in Section “Optimal
Threshold Estimation and Detection” for details) for (A) spindles and (B) K-complexes. The results are depicted for data from each subject, using both experts
as gold standard (only one expert annotation was available for K-complex scoring).
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module, or a text file in the exact same format (see Appendix A
in the Spinky online manual for details).

Once the detection is complete and the results are saved to
disk, the user can compute statistics on the detected events for
the whole data sets (all epochs), by clicking on the menu button
‘‘Export results’’. This function will compute statistics and save
them to a .txt or .mat file. The statistics that are currently available
for K-complex events are: total number, density, frequency and
mean amplitude. For spindles, the available statistics include:
total number, density, mean duration, frequency and mean
amplitude.

STEP 3: Manual Correction of False Detections
(Optional)
This module allows the user to manually correct the output of the
automatic detection procedure. The visual correction interface
(Figure 4) allows correcting for both false negatives (i.e., to
manually add an event that the automatic detector missed) and
false positives (i.e., to delete events detected by the algorithm,
but considered to be false detections by the user). Briefly, to
carry out these corrections the user must first load the automatic
score files (i.e., the .txt file generated by automatic detection
module). In order to delete a false positive event, the user must
click the edit button, select the event to remove and press the
delete button. To add a spindle or K-complex event missed by
the automatic detector, the user must select the event type on
the ‘‘add event panel’’ and then move the selection line(s) to
the desired position(s) and press the ‘‘add’’ button. Note that
it is also possible to continue work on a previously initiated
session; in this case corrections will append the existing corrected
text file.

RESULTS

Evaluation of the Detection Threshold
Variability
First Analysis
The initial training step of the proposed pipeline estimates the
optimal detection threshold based on a sample of annotated
EEG data. As explained in ‘‘Optimal Threshold Estimation and
Detection’’ Sections, we evaluated the robustness of this training
phase with two analyses. Figure 5 shows the distribution of
estimated detection thresholds obtained in the first analysis
(i.e., N = 30; 10 random draws) for spindles and K-complexes.
For spindles (Figure 5A), the impact of the subject and
the expert, on both the mean and the SD of the estimated
thresholds, are clearly visible. For K-complexes, we also observe
a fair amount of inter-subject variability (central tendency and
spread), which however appears to be less noticeable than for
spindles.

Second Analysis
The results obtained for the second analysis are displayed in
Figure 6. As a reminder, for this analysis, we randomly chose
a number N of 20 s scoring pages, with N drawn from a
uniform distribution spanning values from 15 to 120. As can

FIGURE 6 | Mean value (A,B) and standard deviation (SD; C,D) of the
estimated threshold for every subject (indicated as thin black bars within the
plotted distributions) for spindles (A,C) and K-complexes (B,D). In the case of
spindles, results for each expert is reported (color coded blue and green).
Dashed lines indicate the optimal value predicted by a linear regression that
considered the value of N and, for spindles, the expert.

be seen in Figures 6A,B, the number of pages used does not
have a significant impact on the mean detection threshold
(ordinary least-square regression t = −0.10, p = 0.92 for
spindles; t = 1.32, p = 0.19 for K-complexes). This finding
indicates that using a smaller number of pages for training
induces no bias in the estimation of the optimal detection
threshold. The impact of the number of pages on the SD of the
estimated thresholds is shown in Figures 6C,D. Dashed lines
were overlaid to these violin plots to indicate the threshold
value predicted by the linear model, linking the threshold to
the experts and the logarithm (base 2) of the number N of
scoring pages. With respect to the SD, this model captures
almost half of the observed variance for spindles (R2 = 0.419),
and about an eighth for K-complexes (0.123). According to this
model, the expected deviation from the mean value (i.e., the
optimal threshold) will decrease by approximately 2.4 every
time we double the number of scoring pages used during
training. Globally, both the distribution of mean and the SD
values confirm that a small number of 20 s scoring pages
is sufficient to achieve a stable estimation of the detection
threshold.

Automatic Spindle and K-Complex Scoring
with Spinky
Performances for detection are shown in Figures 7, 8 for spindles
and K-complexes, respectively. The average interquartile range
of the distribution of estimated thresholds is of 19.1 for spindles
and 11.7 for K-complexes. Thus, differences between computed
statistics for the first quartile (box-plots on the left) and the
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FIGURE 7 | Applying Spinky for spindle detection performance (Tunable Q-Factor Wavelet Transform (TQWT)-morphological component analysis
(MCA) method) to sleep data from the open-access Montreal Archive of Sleep Studies (MASS) database. Left column: principal statistics (sensitivity,
positive predictive value (PPV), MCC, Cohen’s κ and F1) characterizing the performance of the detector when compared with scoring from experts (different types of
line for different experts), for every subject (in x axis) and using a detection threshold taken as the first, second and third quartile (color coded) of the threshold
distribution for the first analysis (N = 30). Right column: box-plots associated to each expert/quartile conditions.
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FIGURE 8 | Applying Spinky for K-complex detection performance (TQWT-MCA method) to sleep data from the open-access MASS database. Left
column: main statistics (sensitivity, pPV, Matthew’s coefficient of correlation (MCC), Cohen’s κ and F1) characterizing the performance of the detector when
compared to scoring from experts (different type of line for each experts), for every subject (in x axis) and using a detection threshold taken as the first, second and
third quartile (color coded) of the threshold distribution for the first analysis (N = 30). Right column: box-plots associated with each quartile conditions.
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TABLE 1 | Benchmarking spindle detection with Spinky.

Sensitivity PPV MCC Cohen κ F1

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

RSP 0.60 0.30 0.61 0.82 0.60 0.50 0.61 0.40 0.60 0.42
RMS 0.60 0.38 0.56 0.81 0.58 0.55 0.58 0.42 0.50 0.60
Sigma 0.62 0.29 0.60 0.81 0.60 0.56 0.60 0.48 0.61 0.56
Teager 0.63 0.26 0.58 0.85 0.58 0.50 0.59 0.43 0.60 0.44
MP 0.63 − 0.47 − 0.52 − 0.49 − 0.54 −

TQWT 0.78 0.77 0.53 0.69 0.64 0.66 0.62 0.66 0.63 0.70
A1 0.66 − 0.17 − − − 0.20 − − −

A2 0.17 − − − − − 0.22 − − −

A3 0.74 − 0.25 − − − 0.28 − − −

A4 0.66 − 0.52 − − − 0.51 − − −

A5 0.41 − 0.55 − − − 0.38 − − −

A6 0.73 − 0.31 − − − 0.37 − − −

A7 0.94 − 0.17 − − − 0.24 − − −

A8 0.77 − 0.14 − − − 0.16 − − −

CD 0.69 0.75 0.73 0.36 − − − − 0.71 0.49
RF − 0.71 − 0.53 − − − − − −

ANN − 0.68 − 0.55 − − − − − −

Summary of results of performance metrics (Sensitivity, positive predictive value (PPV), Matthews coefficient of correlation (MCC), Cohen κ and F1) computed for spindle

detection in the Montreal Archive of Sleep Studies (MASS) database using Spinky and various other methods. Values in bold represent the performances of our TQWT

based detection method (implemented in spinky).

third quartile (box-plots on the right) are typical of what can be
observed with an imprecision of roughly ±10 around the mean in
the estimation of the detection threshold for spindles and ±6 for
K-complexes.

Benchmarking the Performance of Spinky
on MASS
In addition to evaluating the performance of our method as
a function of its own parameters (previous sections), we also
compared its performance with other detectors that have been
reported in the literature. In this study, this was made possible
by applying our method to open-access annotated sleep EEG
recordings (O’Reilly et al., 2014), which were previously used
to evaluate other detectors. Our proposed method performs
favorably compared to the other approaches in terms of statistics,
capturing both sensitivity and precision (MCC, Cohen κ and F1).
The only exception was a superior result of CD on F1, for the first
expert only (see Table 1).

DISCUSSION

The Spinky toolbox described and evaluated in this article
appears to be a robust, efficient and convenient framework for
joint spindle and K-complex detection. By combining a discrete
wavelet transform known as the TQWT (Selesnick, 2011a) with
MCA, Spinky allows for the decomposition of the EEG signal
into transient (K-complex) and oscillatory (spindle) components
(Lajnef et al., 2015a).

Selecting an appropriate detection threshold is a key step
in the proposed method. Although this parameter can be set
manually in Spinky, the recommended procedure is to use
sample data (with visually scored events) to determine the
optimal threshold using ROC analyses. Ideally, the small sample
data to score for training should emanate from N2 epochs,

as this is the stage where the targeted events are most
prominent. But in theory, using epochs from other stages
for training is possible too. In fact, in a previous study, we
examined the effect of using N2 vs. other sleep stages for
threshold selection using the same detection method (Lajnef
et al., 2015a). In that study we used two scenarios, one
where the training was uniquely done on N2 segments, and
another one, where we used a balanced mixture of N2 and
non-N2. Interestingly, our results showed that, given sufficient
epochs, the training worked equally well in both scenarios.
This indicates that the training does not need to occur only
on N2 epochs. However, of course, one needs to ensure that
spindle or K-complex events are available in the epochs used for
training.

Furthermore, when analyzing the effect of different numbers
of scored 20 s pages on detection threshold mean and variance,
we found that 10 min (i.e., 30 pages of 20 s) seems to
be sufficient. In addition, we also tested the effect of using
a ‘‘minimal number of spindles’’ approach vs. a ‘‘minimal
number of pages’’ approach on the robustness of the identified
threshold. With a model ‘‘threshold ∼ log2(pages) + scorer’’ we
obtained R2 = 0.419 (i.e., we explained 41.9% of the variance
in our data). Alternatively, using the number of spindles with
a model ‘‘threshold ∼ log2(spindles) + scorer’’, we obtained
R2 = 0.423. This high similarity between the two values of
R2 indicates that we can interchangeably use the number of
spindles or number of epochs to characterize the duration of the
training.

The current study builds upon, and extends, our previous
work in several significant ways. First, we provide critical
validation and benchmarking of our TQWT-MCA approach
by applying it to an open-access database, namely the
MASS (O’Reilly et al., 2014). The automatic detection results
reported here confirm the high detection performances we
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had previously obtained with this method in a different set
of subjects (Lajnef et al., 2015a). Furthermore, the scores
obtained in the current study were compared to those previously
reported for other methods tested on the same database.
For spindle detection, our method provided higher, or at
least similar, performance on all statistics, taking into account
both sensitivity and precision (i.e., MCC, F1, Cohen κ).
As shown in Table 1, the sensitivity of spindle detection
with Spinky was substantially higher than that of all the
other methods (for both experts), except for the A3, A7
and A8 detectors, which obtain good sensitivity only by
accepting a much lowered precision. No such benchmarking
was possible for K-complex detection, since—to the best of
our knowledge—no open-access tools for k-complex tools are
available. A further important contribution of this study is the
extensive evaluation of performance that was conducted using a
wide range of metrics (sensitivity, PPV, MCC, Cohen’s κ and the
F1 measure).

Importantly, with the publication of this report, we provide
open-source Matlab code of our Spinky toolbox, along
with Python-based interactive resources. The ‘‘Materials and
Methods’’ Section of the present article, the step-by-step
procedure, and the Matlab GUIs, that will hopefully allow other
researchers, clinicians and students to use Spinky on their own
data.

The thorough testing that we conducted on the training part
of our pipeline (i.e., estimation of the best detection threshold
based on annotated data samples) confirms the efficiency of
the global framework. Indeed, the TQWT-MCA procedure
implemented in Spinky would have been of limited value if
copious amounts of visually scored pages were required for the
training phase, as this would defeat the point of an automatic
detector. Fortunately, our results suggest that there is no need
to invest much resources in scoring a large number of pages
before using these detectors. For example, for spindle detection,
the SD of the optimal (i.e., the mean) value of the estimated
threshold will drop by about 2.4 every time the N number of
scoring pages is doubled. Moreover, the inter-rater agreement
between experts and Spinky (MCC, Cohen’s κ, or F1) only
slightly changed over the tested interquartile range of 19.2. In
practice, our evaluation indicates that visual scoring of about
10 min per night seems sufficient. For K-complex detection,
the SD of the thresholds dropped by about 1.3 every time
the N number is doubled. In this case, the lower end of
the threshold distribution seems to provide better inter-rater
agreement.

To the best of our knowledge, Spinky is the first open-source
tool that has been thoroughly evaluated for the detection of both
spindles and K-complexes.

An alternative pragmatic approach to determining the best
detection threshold, aside from systematically training Spinky
on sample data, would be to run the automatic detector with a
relatively low threshold, and then to correct the output manually
using Spinky’s visual correction interface. This semi-automatic
detection framework would yield high sensitivity by ensuring
that all or most events are detected in the automatic detection
module, as well as low false positive rates by manually discarding

false detections in the visual correction module. Although this
comes at the expense of more time for the manual correction, it
could be a powerful technique, in particular when working with
data with poor signal-to-noise ratio or with data sets collected
across multiple centers using different EEG acquisition systems
and settings.

In summary, the proposed spindle and K-complex detection
framework provides robust performance with reasonably low
time investment from the user. With the validation of our
method on the open-access MASS sleep database, and the release
of Spinky as an open-source tool (GUIs and Matlab/Python
scripts), we sincerely hope that this work will be useful to the
scientific and clinical community.
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