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Abstract

How human prefrontal and insular regions interact while maximizing rewards and minimizing
punishments is unknown. Capitalizing on human intracranial recordings, we demonstrate that the
functional specificity toward reward or punishment learning is better disentangled by interactions
compared to local representations. Prefrontal and insular cortices display non-selective neural populations
to rewards and punishments. The non-selective responses, however, give rise to context-specific interareal
interactions. We identify a reward subsystem with redundant interactions between the orbitofrontal and
ventromedial prefrontal cortices, with a driving role of the latter. In addition, we find a punishment
subsystem with redundant interactions between the insular and dorsolateral cortices, with a driving role of
the insula. Finally, switching between reward and punishment learning is mediated by synergistic
interactions between the two subsystems. These results provide a unifying explanation of distributed
cortical representations and interactions supporting reward and punishment learning.




Introduction

Reward and punishment learning are two key facets of human and animal behavior, because they grant
successful adaptation to changes in the environment and avoidance of potential harm. These learning
abilities are formalized by the law of effect (Thorndike, 1898; Bouton, 2007) and they pertain the
goal-directed system, which supports the acquisition of action-outcome contingencies and the selection of
actions according to expected outcomes, as well as current goal and motivational state (Dickinson and
Balleine, 1994; Balleine and Dickinson, 1998; Balleine and O’doherty, 2010; Dolan and Dayan, 2013;
Balleine, 2019).

At the neural level, a first hypothesis suggests that these abilities are supported by distinct brain circuits
(Pessiglione and Delgado, 2015; Palminteri and Pessiglione, 2017). Indeed, an anatomical dissociation
between neural correlates of reward and punishment prediction error (PE) signals has been observed. PE
signals are formalized by associative models (Rescorla et al., 1972) and reinforcement learning theory
(Sutton and Barto, 2018) as the difference between actual and expected action’s outcomes. Reward
prediction error (RPE) signals have been observed in the midbrain, ventral striatum and ventromedial
prefrontal cortex (vmPFC) (Schultz et al., 1997; O’Doherty et al., 2001, 2004; Pessiglione et al., 2006;
D’Ardenne et al., 2008; Steinberg et al., 2013; Palminteri et al., 2015; Gueguen et al., 2021). Punishment
prediction error (PPE) signals have been found in the anterior insula (aINS), dorsolateral prefrontal cortex
(dIPFC), lateral orbitofrontal cortex (I0OFC) and amygdala (O’Doherty et al., 2001; Seymour et al., 2005;
Pessiglione et al., 2006; Yacubian et al., 2006; Gueguen et al., 2021). Finally, evidence from
pharmacological manipulations and lesion studies indicate that reward and punishment learning can be
selectively affected (Frank et al., 2004; Bodi et al., 2009; Palminteri et al., 2009, 2012). Complementary
evidence, however, suggests that reward and punishment learning may instead share common neural
substrates. Indeed, hubs of the reward circuit, such as the midbrain dopamine systems and vmPFC,
contain neural populations encoding also punishments (Tom et al., 2007; Matsumoto and Hikosaka, 2009;
Plassmann et al., 2010; Monosov and Hikosaka, 2012).

Yet, learning is known to reflect a network phenomenon emerging from neural interactions distributed
over cortical-subcortical circuits (Bassett and Mattar, 2017; Hunt and Hayden, 2017; Averbeck and
Murray, 2020; Averbeck and O’Doherty, 2022). More generally, cognitive functions emerge from the
dynamic coordination over large-scale and hierarchically organized networks (Varela et al., 2001; Bressler
and Menon, 2010; Reid et al., 2019; Panzeri et al., 2022; Thiebaut de Schotten and Forkel, 2022) and
accumulating evidence supports that information about task variables is widely distributed across brain
circuits, rather than anatomically localized (Parras et al., 2017; Saleem et al., 2018; Steinmetz et al., 2019;
Urai et al., 2022; Voitov and Mrsic-Flogel, 2022).

Accordingly, we hypothesized that reward and punishment learning arise from complementary neural
interactions within and/or between brain regions. In particular, we tested whether redundancy- or
synergy-dominated interactions allow the emergence of collective brain networks differentially
supporting reward and punishment learning. Indeed, redundancy-dominated brain networks can be
associated with neural interactions subserving similar functions (i.e., functional segregation). Redundant
interactions may appear in collective states dominated by oscillatory synchronization (Engel et al., 2001;
Varela et al., 2001; Buzsdki and Draguhn, 2004; Fries, 2015) or resonance phenomena (Vinck et al.,
2023). Such collective states may give rise to selective patterns of information flow (Buehlmann and
Deco, 2010; Kirst et al., 2016; Palmigiano et al., 2017; Battaglia and Brovelli, 2020). Synergy-dominated
brain networks can be associated with functionally-complementary interactions (i.e., functional
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integration). Indeed, synergistic interactions have reported between distant transmodal regions during
high-level cognition (Luppi et al., 2022) and, at the microscale, in populations of neurons within a cortical
column of the visual cortex and across areas of the visuomotor network (Nigam et al., 2019; Varley et al.,
2023).

We investigated neural interactions within and between four cortical regions, namely the aINS, dIPFC,
I0FC and vmPFC, by means of intracerebral EEG (iEEG) data collected from epileptic patients while
performing a reinforcement learning task (Gueguen et al., 2021). We found various proportions of
intracranial recordings encoding uniquely RPE or PPE signals or both, suggesting a local probabilistic
representation of PEs. We then identified two distinct learning-related subsystems dominated by
redundant interactions. A first subsystem with RPE-only interactions between the vimPFC and 10FC, and
a second subsystem with PPE-only interactions between the aINS and dIPFC. Within each
redundant-dominated subsystem, we demonstrated differential patterns of directional interactions, with
the vimPFC and aINS playing a driving role in the reward and punishment learning circuits, respectively.
Finally, these two subsystems interacted during the encoding of PE signals irrespectively of the context
(reward or punishment), through synergistic collaboration between the dIPFC and vmPFC. We concluded
that the functional specificity toward reward or punishment learning is better disentangled by interactions
compared to local representations. Overall, our results provide a unifying explanation of distributed
cortical representations and interactions supporting reward and punishment learning.

Results

1IEEG data, behavioral task and computational modeling

We analyzed iEEG data from seventeen pharmacoresistant epileptic patients implanted with intracranial
electrodes (Gueguen et al., 2021). A total of 248 iEEG bipolar derivations located in the aINS, dIPFC,
vmPFC and IOFC regions (Fig. 1A) and 1788 pairs of iEEG signals, both within and across brain regions
(Fig. 1B) were selected for further analysis. Participants performed a probabilistic instrumental learning
task and had to choose between two cues to either maximize monetary gains (for reward cues) or
minimize monetary losses (for punishment cues) (Fig. 1C). Overall, they selected more monetary gains
and avoided monetary losses but the task structure was designed so that the number of trials was balanced
between reward and punishment conditions (Fig. 1D).

We estimated trial-wise prediction errors by fitting a Q-learning model to behavioral data. Fitting the
model consisted in adjusting the constant parameters to maximize the likelihood of observed choices. We
used three constant parameters: i) the learning rate a accounting for how fast participants learned new
pairs of cues; ii) the choice temperature B to model different levels of exploration and exploitation; iii) ©
parameter to account for the tendency to repeat the choice made in the previous trial. The RPE and PPE
were obtained by taking the PE for rewarding and punishing pairs of cues, respectively. RPE and PPE
showed high absolute values early during learning and tended toward zero as participants learned to
predict the outcome (Fig. 1E).
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Fig. 1 iEEG implantation, behavioral task and computational modeling. (4) Anatomical location of intracerebral electrodes across the 17
epileptic patients. Anterior insula (aINS, n=75), dorsolateral prefrontal cortex (dIPFC, n=70), lateral orbitofrontal cortex (IOFC, n=59),
ventromedial prefrontal cortex (vmPFC, n=44), (B) Number of pairwise connectivity links (i.e. within patients) within and across regions,
(C) Example of a typical trial in the reward (top) and punishment (bottom) conditions. Participants had to select one abstract visual cue
among the two presented on each side of a central visual fixation cross and subsequently observed the outcome. Duration is given in
milliseconds, (D) Number of trials where participants received outcomes +1€ (142+44, mean+tstd) vs. 0€ (93£33) in the rewarding condition
(blue) and outcomes 0€ (141442) vs. -1€ (93+27) in the punishment condition (red), (E) Across participants trial-wise reward PE (RPE -
blue) and punishment PE (PPE - red), + 95% confidence interval.

Local probabilistic encoding of PE signals

At the neural level, we first investigated local correlates of prediction error signals by studying whether
RPEs and PPEs are differentially encoded in prefrontal and insular regions. To this end, we performed
model-based information theoretical analyses of iIEEG gamma activities by computing the mutual
information (MI) between the across-trials modulations in RPE or PPE signals and the gamma band
power in the aINS, dIPFC, 10FC and vmPFC. Preliminary spectrally-resolved analyses showed that the
frequency range significantly encoding prediction errors was between 50 and 100 Hz (Fig. S1). We thus
extracted for each trial time-resolved gamma power within the 50 to 100 Hz range using a multi-taper
approach for further analyses. MI analysis between gamma power and prediction error signals displayed
significant group-level effects in all four cortical regions (Fig. 2A) and globally reproduced previous
findings based on general linear model analyses (Gueguen et al., 2021). Interestingly, we observed a clear
spatial dissociation between reward and punishment PE signaling. Whereas the vmPFC and dIPFC
displayed complementary functional preferences for RPE and PPE, respectively, the aINS and the IOFC
carried similar amount of information about both R/PPE (Figure 2A).



To better characterize the spatial granularity of PE encoding, we further studied the specificity of
individual brain regions by categorizing bipolar derivations as either: i) RPE-specific; ii) PPE-specific;
iii) PE-unspecific responding to both R/PPE; iv) PE-irrelevant (i.e. non-significant ones) (Fig. 2B). All
regions displayed a local “probabilistic” encoding of prediction errors with temporal dynamics peaking
around 500 ms after outcome presentation. The vimPFC and dIPFC differentially responded to reward and
punishment PEs, and contained approximately 30% of RPE- and PPE-specific contacts, respectively. In
both regions, the proportion of RPE- and PPE-specific bipolar derivations was elevated for approximately
1 s after outcome presentation. The IOFC also contained a large proportion of PPE-specific bipolar
derivations, but displayed more transient dynamics lasting approximately 0.5 s. The aINS had similar
proportions of bipolar derivations specific for the RPE and PPE (20%), with temporal dynamics lasting
approximately 0.75 s. Importantly, all regions contained approximately 10% of PE-unspecific bipolar
derivations that responded to both RPE and PPE, especially in the aINS and dIPFC. The remaining
bipolar derivations were categorized as PE-irrelevant.

Taken together, our results demonstrate that reward and avoidance learning are not supported by highly
selective brain activations, but rather from a mixed or probabilistic encoding of RPE or PPE signals
distributed over the prefrontal and insular cortices. Nevertheless, such distributed encoding seems to
involve two complementary systems primarily centered over the vmPC and dIPFC, respectively.
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Fig. 2 Local probabilistic encoding of reward and punishment prediction error signals. (4) Time-courses of mutual information (MI in
bits) estimated between the gamma power and the reward (blue) and punishment (red) PE signals. The solid line and the shaded area
represent the mean and SEM of the across-contacts MI. Significant clusters of MI at the group level are plotted with horizontal bold lines
(p<0.05, cluster-based correction, non-parametric randomization across epochs), (B) Instantaneous proportions of task-irrelevant (gray) and
task-relevant bipolar derivations presenting a significant relation with either the RPE (blue), the PPE (red) or with both RPE and PPE
(purple). Data are aligned to the outcome presentation (vertical line at 0 seconds).




Encoding of PE signals emerge from redundancy-dominated subsystems

To better understand the observed complex encoding of reward and punishment PEs, we tested the
hypothesis that functional dissociations emerge from differential and distributed interactions between
prefrontal and insular cortices. To address this question, we performed model-based network-level
analyses based on the Partial Information Decomposition (PID) framework (Williams and Beer, 2010;
Wibral et al., 2017; Lizier et al., 2018). We particularly used the interaction information (McGill, 1954;
Ince et al., 2017) to quantify whether a three-variable interaction (i.e., pairs of brain regions and the PE
variable) is either synergy- and redundancy-dominated (Williams and Beer, 2010). Indeed, interaction
information (II) can be either positive or negative. A negative value indicates a net redundancy (i.e., pair
of recordings are carrying similar information about the PE), whereas a positive value indicates a net
synergistic effect (i.e., pair of recordings are carrying complementary information about the PE). We
computed the time-resolved II across trials between the gamma activity of pairs of iEEG signals and PEs.
To differentiate cortico-cortical interactions for reward and punishment learning, we first calculated the II
separately for RPEs and PPEs. RPE- and PPE-specific analyses exclusively showed negative
modulations of II, therefore indicating the presence of redundancy-dominated local and long-range
interactions (Fig. 3).

To better characterize the local interactions encoding reward and punishment PEs, we computed the II
between pairs of gamma band signals recorded within the aINS, dIPFC, 10FC and vmPFC. Within-region
IT analyses showed that significant RPE-specific interactions were exclusively observed in the vmPFC
and 10FC, whereas PPE-specific interactions were present only in the dIPFC. In addition, the aINS was
found to display both RPE- and PPE-specific interactions (Fig. 3A). A relevant sign of high specificity for
either reward or punishment PE signals was the presence of a significant cluster dissociating RPE and
PPE in the vmPFC and dIPFC only (green clusters in Figure 3A).

To investigate the nature of long-range interactions, we next computed the II for RPE and PPE between
signals from different brain regions (Fig.__3B). Similarly, results exclusively showed
redundancy-dominated interactions (i.e., negative modulations). RPE-specific interactions were observed
between the IOFC and vmPFC, whereas PPE-specific interactions were observed between the aINS and
dIPFC and to a smaller extent between the dIPFC and IOFC, peaking 500 ms after outcome presentation.
A significant difference between RPE and PPE was exclusively observed in the IOFC-vmPFC and
aINS-dIPFC interactions, but not between dIPFC and IOFC (green clusters in Fig. 3B). We conclude that
the encoding of RPE and PPE signals emerge from redundancy-dominated subsystems that differentially
engage prefronto-insular regions.
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Fig. 3 Encoding of PE signals emerges from redundancy-dominated subsystems. Dynamic interaction information (II in bits) within- (4)
and between-regions (B) about the RPE (Ilzpg) and PPE (Ilpg) are plotted in blue and red. Significant clusters of [lpg and Ilppg are displayed
with horizontal bold blue and red lines (p<0.05, cluster-based correction, non-parametric randomization across epochs). Significant
differences between Ilzpe and Il are displayed in green. Shaded areas represent the SEM. The vertical gray line at 0 seconds represents the
outcome presentation.

Contextual directional interactions within redundant subsystems

Previous analyses of II are blind to the direction of information flows. To address this issue, we estimated
the transfer entropy (TE) (Schreiber, 2000) on the gamma power during the rewarding (TEg.,) and
punishment conditions (TE;,,), between all possible pairs of contacts. As a reminder, the TE is an
information-theoretic measure that quantifies the degree of directed statistical dependence or “information
flow” between time series, as defined by the Wiener-Granger principle (Wiener, 1956; Granger, 1969).
Delay-specific analyses of TE showed that a maximum delay of information transfer between pairs of
signals comprised an interval between 116 and 236 msec (Fig. S2). We thus computed the TE for all pairs
of brain regions within this range of delays and detected temporal clusters where the TE significantly
differed between conditions (TEg.,, > TE,,, or TE;,, > TEg.,). Only two pairs of brain regions displayed
statistically-significant modulations in TE (Fig. 4). We observed that the TE from the aINS to the dIPFC
(TE.ns—arrc) peaked at approximately 400 msec after outcome onset and was significantly stronger
during the punishment condition compared to the rewarding condition. By contrast, the information flow
around ~800ms from the vmPFC to the IOFC (TE,,prc_i0rc) Was significantly stronger during the
rewarding condition. No other brain interactions were found significant (Fig. S3). Overall, these results
demonstrate that the two redundancy-dominated RPE- and PPE-specific networks (Fig. 3B) are
characterized by differential directional interactions. The vmPFC and aINS act as drivers in the two
systems, whereas the dIPFC and IOFC play the role of receivers, thus suggesting a flow of PE-specific
information within the network.
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Fig. 4 Contextual modulation of information transfer. Time courses of transfer entropy (TE, in bits) from the aINS to the dIPFC
(aINS—dIPFC) and from the vmPFC to the IOFC (vmPFC—I1OFC), estimated during the rewarding condition (TEg.,, in blue) and punishing
condition (TE,,, in red). Significant differences (p<0.05, cluster-based correction, non-parametric randomization across epochs) of TE
between conditions are displayed with horizontal bold lines (blue for TEg., > TE,,, and red for TE,;,, > TEg.,). Shaded areas represent the
SEM. The vertical gray line at 0 seconds represents the outcome presentation.

Integration of PE signals emerges from synergy-dominated interactions between
segregated sub-systems

Since learning required participants to concurrently explore rewarding and punishment outcomes, we
finally investigated the nature of cortico-cortical interactions encoding both RPE and PPE signals. We
estimated the II about the full PEs, i.e. the information carried by co-modulation of gamma power
between all pairs of contacts about PE signals (Fig S4). Encoding of PEs was specifically associated with
significantly positive II between the dIPFC and vmPFC (I;ppc.ymprc: Fig. SA). Such between-regions
synergy-dominated interaction occurred approximately between 250 and 600 ms after outcome onset.

We then investigated if the synergy between the dIPFC and vmPFC encoding global PEs could be
explained by their respective local specificity. Indeed, we previously reported larger proportions of
recordings encoding the PPE in the dIPFC and the RPE in the vmPFC (Fig. 2B). Therefore, it is possible
that the positive I1;ppc.,mpre could be mainly due to complementary roles where the dIPFC brings
information about the PPE only and the vmPFC brings information to the RPE only. To test this
possibility, we computed the 11pzc.,..prc for groups of bipolar derivations with different local specificity.
As a reminder, bipolar derivations were previously categorized as RPE or PPE specific if their gamma
activity were modulated according to the RPE only, to the PPE only or to both (Fig. 2B). We obtained
four categories of II. The first two categories, named Ilpzpy and Ipppppr , reflect the 11 estimated
between RPE- and PPE- bipolar derivations from the dIPFC and vmPFC. The third category (IIppy_gpr)
refers to the /I estimated between PPE-specific bipolar recordings from the dIPFC and RPE-specific
bipolar recordings from the vmPFC. Finally, the forth category, named I/, includes the remaining
possibilities (i.e., RPE-Both, PPE-Both and Both-Both) (Fig. S5A). Interestingly, we found significant
synergistic interactions between recordings with mixed specificity i.e. /lppz gpr and 11, between 250 and
600 ms after outcome onset (Fig. 5B and 5C). Consequently, the 11;ppc.,..prc 1S partly explained by the
dIPFC and vmPFC carrying PPE- and RPE-specific information (Ilppzzpz) together with interactions
between non-specific recordings (//,,..,). Taken together, the integration of the global PE signals emerged
from the synergistic interaction between recordings with mixed specificity from the dIPFC and vimPFC.
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Discussion

Our study revealed the presence of specific functional interactions between prefrontal and insular cortices
about reward and punishment prediction error signals. We first provided evidence for a probabilistic
encoding of reward and punishment prediction error signals in each cortical region. We then identified a
first subsystem specifically encoding RPEs with emerging redundancy-dominated interactions within and
between the vmPFC and 10FC, with a driving role of the vmPFC. A second subsystem specifically
encoding PPEs emerged from redundancy-dominated interactions within and between the aINS and
dIPFC, with a driving role of the aINS. Switching between the encoding of reward and punishment PEs
involved a synergy-dominated interaction between these two systems mediated by interactions between
the dIPFC and vmPFC (Fig. 6).

Local mixed representations of prediction errors. Amongst the four investigated core-learning regions,
the vimPFC was the only region to show a higher group-level preference for RPEs. This supports the
notion that the vmPFC is functionally more specialized for the processing outcomes in reward learning, as
previously put forward by human fMRI meta-analyses (Yacubian et al., 2006; Diekhof et al., 2012; Bartra
et al., 2013; Garrison et al., 2013; Fouragnan et al., 2018). The dIPFC, instead, showed a stronger
selectivity for punishment PE, thus supporting results from fMRI studies showing selective activations for
aversive outcomes (Liu et al., 2011; Garrison et al., 2013; Fouragnan et al., 2018). On the contrary, the
aINS and IOFC did not show clear selectivity for either reward or punishment PEs. The aINS carried a
comparable amount of information about the RPE and PPE, thus suggesting that the insula is part of the
surprise-encoding network (Fouragnan et al., 2018; Loued-Khenissi et al., 2020). Previous study reported
a stronger link between the gamma activity of the aINS and the PPE compared to the RPE (Gueguen et
al., 2021). This discrepancy in the results could be explained by the measures of information we are using
here that are able to detect both linear and non-linear relationships between gamma activity and PE
signals (Ince et al., 2017). The IOFC showed an initial temporal selectivity for PPE followed by a delayed
one about the RPE. This is in accordance with fMRI and human intracranial studies which revealed that
the IOFC was activated when receiving punishing outcomes, but also contains reward-related information
(O’Doherty et al., 2001; Saez et al., 2018; Gueguen et al., 2021).



By taking advantage of the multi-site sampling of iEEG recordings, we quantified the heterogeneity in
functional selectivity within each area and showed that the region-specific tendency toward either RPE or
PPEs (Fig. 2A) could be explained by the largest domain-specific proportion of contacts (Fig. 2B). In
other words, if a region showed a larger proportion of contacts being RPE-specific, the amount of
information about the RPE at the group-level was also larger. Interestingly, we observed that 5 to 20% of
contacts within a given region encoded both the RPE and PPE, thus revealing local mixed representations.
Consequently, a strict dichotomous classification of learning-related areas as either reward and
punishment may fail to capture important properties of the individual nodes of the learning circuit, such
as the functional heterogeneity in the encoding of PEs. These results suggest that the human prefrontal
cortex exhibits a mixed local selectivity for prediction error signals at the mesoscopic scale. This view is
in line with recent literature showing that prefrontal cortex contains single neurons exhibiting mixed
selectivity for multiple task variables (Meyers et al., 2008; Rigotti et al., 2013; Stokes et al., 2013; Panzeri
et al., 2015; Parthasarathy et al., 2017; Bernardi et al., 2020). In the learning domain, single-unit studies
have reported neurons encoding both rewarding and aversive outcomes in the OFC of the primate
(Morrison and Salzman, 2009; Monosov and Hikosaka, 2012; Hirokawa et al., 2019). Mixed selectivity
provides computational benefits, such as increasing the number of binary classifications, improving
cognitive flexibility, and simplifying readout by downstream neurons (Fusi et al., 2016; Helfrich and
Knight, 2019; Ohnuki et al., 2021; Panzeri et al., 2022). We suggest that the encoding of cognitive
variables such as prediction error signals is supported by similar principles based on mixed selectivity at
the meso- and macroscopic level, and may provide a natural substrate for cognitive flexibility and
goal-directed learning (Rigotti et al., 2013).

Redundancy-dominated interactions segregate reward and punishment learning subsystems. We
then tested whether the encoding of RPE and PPE signals could be supported by differential
cortico-cortical interactions within and between frontal brain regions. To do so, we exploited the
interaction information (II) (McGill, 1954; Ince et al.,, 2017) to quantify whether the amount of
information bound up in a pair of gamma responses and PE signals is dominated by redundant or
synergistic interactions (Williams and Beer, 2010). The II revealed redundancy-dominated interactions
specific for RPE and PPE in the vmPFC and the dIPFC, respectively (Fig. 3A). The aINS was the only
region for which the between-contacts II did not increase the functional selectivity, with large redundant
interactions for both RPE and PPE signals. This suggests that within-area redundant interactions can
potentially amplify the functional specificity, despite the presence of local mixed selectivity (Fig. 2A).
Such “winner-take-all” competition could be implemented by mutual inhibition mechanisms, which have
been suggested to be essential in reward-guided choice (Hunt et al., 2012; Jocham et al., 2012; Strait et
al., 2014; Hunt and Hayden, 2017).

Across-areas interaction information revealed two subsystems with intrinsic redundancy-dominated
interactions. A reward subsystem with RPE-specific interactions between the IOFC and vmPFC, and a
punishment subsystem with PPE-specific interactions between the aINS and dIPFC (Fig. 3B). Although a
significant modulation selective for RPE was also present in the interaction between dIPFC and 10FC
peaking around 500 ms after outcome presentation, a significant difference between the encoding of RPE
and PPE was exclusively observed in the IOFC-vmPFC and aINS-dIPFC interactions (green clusters in
Fig. 3B). This result suggests that the observed functionally-distinct learning circuits for RPE and PPEs
emerge from differential cortico-cortical interactions, rather than distinct local properties. More generally,
our results suggest that redundancy-based network-level interactions are related with the functional
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specificity observed in neuroimaging and lesion studies (Pessiglione and Delgado, 2015; Palminteri and
Pessiglione, 2017).

We then investigated differential communication patterns and directional relations within the two
redundancy-dominated circuits (Kirst et al., 2016; Palmigiano et al., 2017). We identified significant
information routing patterns, dissociating reward and punishment learning (Fig. 4). Within the reward
subsystem, the vmPFC played a driving role toward the 10FC only during the rewarding condition.
Conversely, within the punishment subsystem, the aINS played a driving role toward the dIPFC only
during the punishment condition. These results support the notion that redundancy-dominated cognitive
networks are associated with the emergence of information-routing capabilities, where signals are
communicated on top of collective reference states (Battaglia and Brovelli, 2020).

Encoding the full PE is supported by synergistic interactions between subsystems. Humans can
flexibly switch between learning strategies that allow the acquisition of stimulus-action-outcomes
associations in changing contexts. We investigated how RPE and PPE subsystems coordinated to allow
such behavioral flexibility. To do so, we searched for neural correlates of PEs irrespectively of the context
(reward or punishment learning) in between-regions interactions. We found that the encoding of global
PE signals was associated with synergy-dominated interactions between the two subsystems, mediated by
the interactions between the dIPFC and the vmPFC (Fig. 5). Importantly, such synergy-dominated
interaction reveals that the joint representation of the dIPFC and vmPFC is greater than the sum of their
individual contributions for the encoding of global PE signals. Thus, it suggests that successful adaptation
in varying contexts requires both the vmPFC and dIPFC for the encoding of global PE signals.

Role of redundant and synergistic interactions in brain network coordination. At the macroscopic
level, few studies investigated the potential role of redundant and synergistic interactions. By combining
functional and diffusion MRI, recent work suggested that redundant interactions are predominantly
associated with structurally coupled and functionally segregated processing. In contrast, synergistic
interactions preferentially support functional integrative processes and complex cognition across
higher-order brain networks (Luppi et al., 2022). Triadic synergistic interactions between the continuous
spike counts recorded within and across areas of the visuomotor network have been shown to carry
behaviorally-relevant information and to display the strongest modulations during the processing of visual
information and movement execution (Varley et al., 2023). Finally, cortical representations of prediction
error signals in the acoustic domain observed tone-related and instantaneous redundant interactions, such
as time-lagged synergistic interactions within and across temporal and frontal regions of the auditory
system (Gelens et al., 2023).

At the microscopic level, the amount of information encoded by a population of neurons can be
modulated by pairwise and higher-order interactions, producing varying fractions of redundancy and
synergy (Averbeck et al., 2006; Panzeri et al., 2015, 2022). Synergistic and redundant pairs of neurons
can be identified by estimating the amount of information contained in the joint representation minus the
sum of the information carried by individual neurons (Schneidman et al., 2003). Redundant coding is
intricately linked to correlated activity (Gutnisky and Dragoi, 2008) and can spontaneously emerge due to
the spatial correlations present in natural scenes by triggering neurons with overlapping receptive fields.
Correlations between the trial-by-trial variations of neuronal responses could limit the amount of
information encoded by a population (Ramon Bartolo et al., 2020; Kafashan et al., 2021) and facilitate
readout by downstream neurons (Salinas and Sejnowski, 2001). While redundancy has been at the heart
of heated debates and influential theories, such as efficient coding and redundancy compression in
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sensory areas (Barlow, 2001), synergy phenomena have been described to a lesser extent. Recently, a
study reported synergistic coding in a V1 cortical column together with structured correlations between
synergistic and redundant hubs (Nigam et al., 2019). Taken together, the literature associated with
population codes proposed that balancing proportions of redundancy and synergy offers a good
compromise between system robustness and resilience to cell loss and the creation of new information
(Panzeri et al., 2022).

Taken together, we suggest that redundancy-dominated interactions confer robustness and network-level
selectivity for complementary learning processes, which may lead to functional integration processes. On
the other hand, synergy-dominated interactions seem to support neural interactions between
redundancy-dominated networks, thus supporting functional integrative processes in the brain. In
addition, our study suggests that redundant and synergistic interactions occur across multiple spatial
scales from local to large-scale.

Conclusion. Our report of mixed representation of reward and punishment prediction error signals
explains the discrepancy in the attribution of a functional specificity to the core learning cortical regions.
Instead, we propose that functional specialization for reward and punishment PE signals emerges from
redundancy-dominated interactions within the two subsystems formed by the vmPFC-IOFC and
aINS-dIPFC, respectively. Within each subsystem, we observed asymmetric and directional interactions
with the vmPFC and aINS playing a driving role in the reward and punishment learning circuits. Finally,
switching between reward and punishment learning was supported by synergistic collaboration between
subsystems. This supports the idea that higher-order integration between functionally-distinct subsystems
are mediated by synergistic interactions. Taken together, our results provide a unifying view reconciling
distributed cortical representations with interactions supporting reward and punishment learning. They
highlight the relevance of considering learning as a network-level phenomenon by linking distributed and
functionally redundant subnetworks through synergistic interactions hence supporting flexible cognition
(Fedorenko and Thompson-Schill, 2014; Petersen and Sporns, 2015; Bassett and Mattar, 2017; Hunt and
Hayden, 2017; Averbeck and Murray, 2020; Averbeck and O’Doherty, 2022).
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Fig 6. Summary of findings. The four nodes represent the investigated regions, namely the anterior insula (aINS), the dorsolateral and
ventromedial parts of the prefrontal cortex (dIPFC and vmPFC) and the lateral orbitofrontal cortex (IOFC). The outer disc represents the
local probabilistic encoding i.e. the different proportions of contacts over time having a significant relationship between the gamma power
and PE signals. In blue, is the proportion of contacts with a significant relation with the PE across rewarding trials (RPE-specific).
Conversely, in red for punishment trials (PPE-specific). In purple, the proportion of contacts with a significant relationship with both the RPE
and PPE. In gray, is the remaining proportion of non-significant contacts. Regarding interactions, we found that information transfer between
aINS and dIPFC carried redundant information about PPE only and information transfer between vmPFC and 10FC about RPE only. This
information transfer occurred with a leading role of the aINS in the punishment context and the vimPFC in the rewarding context. Finally, we
found synergistic interactions between the dIPFC and the vmPFC about the full PE, without splitting into rewarding and punishing
conditions.

Methods

Data acquisition and experimental procedure

Intracranial EEG recordings

Intracranial electroencephalography (IEEG) recordings were collected from seventeen patients presenting
pharmaco-resistant focal epilepsy and undergoing presurgical evaluation (33.5 + 12.4 years old, 10
females). As the location of the epileptic foci could not be identified through noninvasive methods, neural
activity was monitored using intracranial stereotactic electroencephalography. Multi-lead and semi-rigid
depth electrodes were stereotactically implanted according to the suspected origin of seizures. The
selection of implantation sites was based solely on clinical aspects. iEEG recordings were performed at
the clinical neurophysiology epilepsy departments of Grenoble and Lyon Hospitals (France). iEEG
electrodes had a diameter of 0.8mm, 2mm wide, 1.5mm apart and contained 818 contact leads (Dixi,
Besancon, France). For each patient, 5 to 17 electrodes were implanted. Recordings were conducted using
an audio—video-EEG monitoring system (Micromed, Treviso, Italy), which allowed simultaneous
recording of depth iIEEG channels sampled at 512 Hz (6 patients), or 1024 Hz (12 patients) [0.1-200 Hz
bandwidth]. One of the contacts located in the white matter was used as a reference. Anatomical
localizations of iEEG contacts were determined based on post-implant computed tomography scans or
post-implant MRI scans coregistered with pre-implantation scans (Lachaux et al., 2003; Mercier et al.,
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2022). All patients gave written informed consent and the study received approval from the ethics
committee (CPP 09-CHUG-12, study 0907) and from a competent authority (ANSM no:
2009-A00239-48).

Limitations

iIEEG have been collected from pharmacoresistant epileptic patients who underwent deep electrode
probing for preoperative evaluation. However, we interpreted these data as if collected from healthy
subjects and assumed that epileptic activity does not affect the neural realization of prediction error. To
best address this question, we excluded electrodes contaminated with pathological activity and focused on
task-related changes and multi-trial analysis to reduce the impact of incorrect or task-independent neural
activations. Therefore, our results may benefit from future replication in healthy controls using
non-invasive recordings. Despite the aforementioned limitations, we believe that access to deep
intracerebral EEG recordings of human subjects can provide privileged insight into the neural dynamics
that regulate human cognition, with outstanding spatial, temporal, and spectral precision. In the long run,
this type of data could help bridge the gap between neuroimaging studies and electrophysiological
recordings in nonhuman primates.

Preprocessing of iEEG data

Bipolar derivations were computed between adjacent electrode contacts to diminish contributions of
distant electric sources through volume conduction, reduce artifacts and increase the spatial specificity of
the neural data. Bipolar iEEG signals can approximately be considered as originating from a cortical
volume centered within two contacts (Brovelli et al., 2005; Bastin et al., 2016; Combrisson et al., 2017),
thus providing a spatial resolution of approximately 1.5-3mm (Lachaux et al., 2003; Jerbi et al., 2009;
Mercier et al., 2022). Recording sites with artifacts and pathological activity (e.g. epileptic spikes) were
removed using visual inspection of all of the traces of each site and each participant.

Definition of anatomical regions of interest

Anatomical labeling of bipolar derivations was performed using the IntrAnat software (Deman et al.,
2018). The 3D T1 pre-implantation MRI gray/white matter was segmented and spatially normalized to
obtain a series of cortical parcels using MarsAtlas (Auzias et al., 2016) and the Destrieux atlas (Destrieux
et al., 2010). 3D coordinates of electrodes contacts were then coregistered on post-implantation images
(MRI or CT). Each recording site (i.e., bipolar derivation) was labeled according to its position in a
parcellation scheme in the participant’s native space. Thus, the analyzed dataset only included electrodes
identified to be in the gray matter. Four regions of interest (ROIs) were defined for further analysis: 1) the
ventromedial prefrontal cortex (vmPFC) ROI was created by merging six (three per hemisphere) parcels
in MarsAtlas (labeled PFCvm, OFCv and OFCvm in MarsAtlas) corresponding to the ventromedial
prefrontal cortex and fronto-medial part of the orbitofrontal cortex, respectively; 2) the lateral
orbitofrontal cortex (IOFC) ROI included four (two per hemisphere) MarsAtlas parcels (MarsAtlas labels:
OFCvl and the OFCv); 3) the dorsolateral prefrontal cortex (dIPFC) ROI was defined as the inferior and
superior bilateral dorsal prefrontal cortex (MarsAtlas labels: PFrdli and PFrdls); 4) the anterior insula
(aINS) ROI was defined as the bilateral anterior part of the insula (Destrieux atlas labels: Short insular
gyri, anterior circular insular sulcus and anterior portion of the superior circular insular sulcus). The total
number of bipolar iIEEG derivations for the four ROIS was 44, 59, 70 and 75 for the vmPFC, 10FC,
dIPFC and aINS, respectively (Fig. 1A). As channels with artifacts or epileptic activities were removed
here, the number of recordings differs from a previous study (Gueguen et al., 2021).
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Behavioral task and set-up

Participants were asked to participate in a probabilistic instrumental learning task adapted from previous
studies (Pessiglione et al., 2006; Palminteri et al., 2012). Participants received written instructions that the
goal of the task was to maximize their financial payoff by considering reward-seeking and punishment
avoidance as equally important. Instructions were reformulated orally if necessary. Participants started
with a short session, with only two pairs of cues presented on 16 trials, followed by 2—3 short sessions of
5 min. At the end of this short training, all participants were familiar with the timing of events, with the
response buttons and all reached a threshold of at least 70% of correct choices during both reward and
punishment conditions. Participants then performed three to six sessions on a single testing occurrence,
with short breaks between sessions. Each session was an independent task, with four new pairs of cues to
be learned. Cues were abstract visual stimuli taken from the Agathodaimon alphabet. The two cues of a
pair were always presented together on the left and right of a central fixation cross and their relative
position was counterbalanced across trials. On each trial, one pair was randomly presented. Each pair of
cues was presented 24 times for a total of 96 trials per session. The four pairs of cues were divided into
two conditions. A rewarding condition where the two pairs could either lead the participants to win one
euro or nothing (+1€ vs. 0€) and a symmetric punishment condition where the participants could either
lose one euro or nothing (-1€ vs. 0€). Rewarding and punishing pairs of cues were presented in an
intermingled random manner and participants had to learn the four pairs at once. Within each pair, the two
cues were associated with the two possible outcomes with reciprocal probabilities (0.75/0.25 and
0.25/0.75). To choose between the left or right cues, participants used their left or right index to press the
corresponding button on a joystick (Logitech Dual Action). Since the position on the screen was
counterbalanced, response (left versus right) and value (good vs. bad cue) were orthogonal. The chosen
cue was colored in red for 250 ms and then the outcome was displayed on the screen after 1000 ms. To
win money, participants had to learn by trial and error which cue-outcome association was the most
rewarding in the rewarding condition and the least penalizing in the punishment condition. Visual stimuli
were delivered on a 19-inch TFT monitor with a refresh rate of 60 Hz, controlled by a PC with
Presentation 16.5 (Neurobehavioral Systems, Albany, CA).

Computational model of learning

To model choice behavior and estimate prediction error signals, we used a standard Q-learning model
(Watkins and Dayan, 1992) from reinforcement learning theory (Sutton and Barto, 2018). For a pair of
cues A and B, the model estimates the expected value of choosing A4 (Qa) or B (Qb), given previous
choices and received outcomes. Q-values were initiated to 0, corresponding to the average of all possible
outcome values. After each trial ¢, the expected value of choosing a stimulus (e.g. 4) was updated
according to the following update rule:

Qa1 = Qay + ady (1)

with o the learning rate weighting the importance given to new experiences and 9, the outcome prediction
error (PE) signals at a trial # defined as the difference between the obtained and expected outcomes:

0y = Ry — Qay )

with R, the reinforcement value among -1€, 0€ and 1€. The probability of choosing a cue was then
estimated by transforming the expected values associated with each cue using a softmax rule with a Gibbs
distribution. An additional © parameter was added in the softmax function to the expected value of the
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chosen option on the previous trial of the same cue to account for the tendency to repeat the choice made
on the previous trial. For example, if a participant chose option 4 on trial ¢, the probability of choosing 4
at trial #+/ was obtained using :

e (Qat +9) / B

Payq =

with B the choice temperature for controlling the ratio between exploration and exploitation. The three
free parameters o, § and © were fitted per participant and optimized by minimizing the negative
log-likelihood of choice using the MATLAB fmincon function, initialized at multiple starting points of the
parameter space (Palminteri et al., 2015). Estimates of the free parameters, the goodness of fit and the
comparison between modeled and observed data can be seen in Table 1 and Figure 1 in (Gueguen et al.,
2021).

1IEEG data analysis

Estimate of single-trial gamma-band activity

A key neural signal for studying functional cortical networks is the gamma-band (40—150 Hz) neural
activity. In humans, power modulations in the gamma range are commonly recorded using MEG and
intracranial EEG to map task-related brain regions (Brovelli et al., 2005; Crone et al., 2006; Vidal et al.,
2006; Ball et al., 2008; Jerbi et al., 2009; Lachaux et al., 2012; Cheyne and Ferrari, 2013). In addition,
gamma-band modulations can be used to characterize cortico-cortical interactions and functional
connectivity among brain regions supporting executive functions (Brovelli et al., 2015, 2017; Combrisson
et al., 2022a). In the current study, we estimated the power in the gamma band using a multitaper
time-frequency transform based on Slepian tapers (Percival et al., 1993; Mitra and Pesaran, 1999). To
extract gamma-band activity from 50 to 100Hz, the iEEG time series were multiplied by 9 orthogonal
tapers (15 cycles for a duration of 200ms and with a time-bandwidth for frequency smoothing of 10Hz),
centered at 75 Hz and Fourier-transformed. To limit false negatives proportions due to multiple testings,
we down-sampled the gamma power to 256 Hz. Finally, we smoothed the gamma power using a 10 points
Savitzky-Golay filter. We used MNE-Python (Gramfort et al., 2013) to inspect the time series, reject
contacts contaminated with pathological activity, and estimate the power spectrum density
(mne.time_frequency.psd_multitaper) and the gamma power (mne.time_frequency.tfr_multitaper).

Local correlates of PE signals

To quantify the local encoding of prediction error (PE) signals in the four ROIs, we used
information-theoretic metrics. To this end, we computed the time-resolved mutual information (MI)
between the single-trial gamma-band responses and the outcome-related PE signals. As a reminder,
mutual information is defined as:

I(X;Y)=H(X)- H(X|Y) @

In this equation, the variables X and Y represent the across-trials gamma-band power and the PE
variables, respectively. H(X) is the entropy of X, and H(X]|Y) is the conditional entropy of X given Y. In
the current study, we used a semi-parametric binning-free technique to calculate MI, called
Gaussian-Copula Mutual Information (GCMI) (Ince et al., 2017). The GCMI is a robust rank-based
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approach that allows the detection of any type of monotonic relation between variables and it has been
successfully applied to brain signals analysis (Colenbier et al., 2020; Michelmann et al., 2021; Ten Oever
et al., 2021). Mathematically, the GCMI is a lower-bound estimation of the true MI and it does not depend
on the marginal distributions of the variables, but only on the copula function that encapsulates their
dependence. The rank-based copula-normalization preserves the relationship between variables as long as
this relation is strictly increasing or decreasing. As a consequence, the GCMI can only detect monotonic
relationships. Nevertheless, the GCMI is of practical importance for brain signal analysis for several
reasons. It allows to estimate the MI on a limited number of samples and it contains a parametric bias
correction to compensate for the bias due to the estimation on smaller datasets. It allows to compute the
MI on uni- and multivariate variables that can either be continuous or discrete (see Table I in (Ince et al.,
2017)). Finally, it is computationally efficient, which is a desired property when dealing with a large
number of iEEG contacts recording at a high sampling rate. Here, the GCMI was computed across trials
and it was used to estimate the instantaneous amount of information shared between the gamma power of
1IEEG contacts and RPE (Ml = I(y; RPE)) and PPE signals (Mppg = I(y; PPE)).

Network-level interactions and PE signals

The goal of network-level analyses was to characterize the nature of cortico-cortical interactions encoding
reward and punishment PE signals. In particular, we aimed to quantify: 1) the nature of the
interdependence between pairs of brain ROIs in the encoding of PE signals; 2) the information flow
between ROIs encoding PE signals. These two questions were addressed using Interaction Information
and Transfer Entropy analyses, respectively.

Interaction Information analysis: In classical information theory, interaction information (II) provides a
generalization of mutual information for more than two variables (McGill, 1954; Ince et al., 2017). For
the three-variables case, the II can be defined as the difference between the total, or joint, mutual
information between ROIs (R, and R,) and the third behavioral variable (S), minus the two individual
mutual information between each ROI and the behavioral variable. For a three variables multivariate
system composed of two sources R;, R, and a target S, the II is defined as :

II(R1; R; S) = 1(S; Ra|Ro) — I(Ry; S)

=1
= I(R1,R2; S) — I(R1; S) — I(Ra; S) 5)

Unlike mutual information, the interaction information can be either positive or negative. A negative
value of interaction information indicates a net redundant effect between variables, whereas positive
values indicate a net synergistic effect (Williams and Beer, 2010). Here, we used the II to investigate the
amount of information and the nature of the interactions between the gamma power of pairs of contacts
(v1, v») about the RPE (Ilzpz = II(y,, v,; RPE)) and PPE signals (Ilypz = I(y,, v,; PPE)). The II was
computed by estimating the MI quantities of equation (5) using the GCMI between contacts within the
same brain region or across different regions.

Transfer Entropy analysis: To quantify the degree of communication between neural signals, the most
successful model-free methods rely on the Wiener-Granger principle (Wiener, 1956; Granger, 1969). This
principle identifies information flow between time series when future values of a given signal can be
predicted from the past values of another, above and beyond what can be achieved from its
autocorrelation. One of the most general information theoretic measures based on the Wiener-Granger
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principle is Transfer Entropy (TE) (Schreiber, 2000). The TE can be formulated in terms of conditional
mutual information (Schreiber, 2000; Kaiser and Schreiber, 2002):

TE(X = Y) = I(Xpast; Ye|Ypast) ©)

Here, we computed the TE on the gamma activity time courses of pairs of iIEEG contacts. We used the
GCMI to estimate conditional mutual information. For an interval [d;, d,] of nyg,ys, the final TE estimation
was defined as the mean over the TE estimated at each delay :

do
1
TE(X = Y)d.d0) = o > I(Xg4; Y| Yg)
d=d, (7

Statistical analysis

We used a group-level approach based on non-parametric permutations, encompassing non-negative
measures of information (Combrisson et al., 2022a). The same framework was used at the local level (i.e.
the information carried by single contact) or at the network level (i.e. the information carried by pairs of
contacts for the II and TE). To take into account the inherent variability existing at the local and network
levels, we used a random-effect model. To generate the distribution of permutations at the local level, we
shuffled the PE variable across trials 1000 times and computed the MI between the gamma power and the
shuffled version of the PE. The shuffling led to a distribution of MI reachable by chance, for each contact
and at each time point (Combrisson and Jerbi, 2015). To form the group-level effect, we computed a
one-sample t-test against the permutation mean across the MI computed on individual contacts taken from
the same brain region, at each time point. The same procedure was used on the permutation distribution to
form the group-level effect reachable by chance. We used cluster-based statistics for correcting for
multiple comparisons (Maris and Oostenveld, 2007). The cluster-forming threshold was defined as the
95th percentile of the distribution of t-values obtained from the permutations. We used this threshold to
form the temporal clusters within each brain region. We obtained cluster masses on both the true t-values
and the t-values computed on the permutations. To correct for multiple comparisons, we built a
distribution made of the largest 1000 cluster masses estimated on the permuted data. The final corrected
p-values were inferred as the proportion of permutations exceeding the t-values. To generate the
distributions of I and TE reachable by chance, we respectively shuffled the PE variable across trials for
the II and the gamma power across trials of the source for the TE (Vicente et al., 2011). The rest of the
significance testing procedure at the network level is similar to the local level, except that it is not applied
within brain regions but within pairs of brain regions.

Software

Information-theoretic metrics and group-level statistics, are implemented in a homemade Python software
called Frites (Combrisson et al., 2022b). The interaction information can be computed using the
frites.conn.conn_ii function and the transfer entropy using the frites.conn.conn_te function.
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Supplementary

Local encoding of prediction error signals within the gamma band

We searched for the most informative sub-band about the R/PPE within the broad gamma range. To
this end, we estimated the PSD between [50, 200]Hz during the first second following the outcome
apparition. We used multitapers with a 20Hz bandwidth for the multi-taper windowing function. We
then estimated the amount of information carried by individual gamma frequencies about the R/PPE
in the four brain regions. We found significant clusters of MI over the four brain regions with both
RPE and PPE signals mostly within the [50, 100]Hz range (Fig. S1A). We then estimated the
density of information within the [50, 100]Hz, [100, 150]Hz and [150, 200]Hz bins (Fig. S1B).
Approximately 60% of the total information was concentrated within the [50, 100]Hz range.
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Fig S1. Local encoding of prediction error signals within the gamma band. (4) Distribution of information in the aINS, dIPFC,
10FC and vimPFC about the R/PPE in the frequency domain. The solid line and the shaded area respectively represent the mean and
SEM of the across-contacts MI. Horizontal thick lines represent significant clusters of information (p<0.05, cluster-based correction,
non-parametric randomization across epochs), (B) Density of information in the [50, 100]Hz, [100, 150]Hz and [150, 200]Hz bins.
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Optimal delay interval for maximizing information transfer

We searched for the optimal delay interval to maximize the information transfer between regions.
An important parameter to consider when estimating TE is the number of time points in the past of
the target to use for conditioning. An information flow from source X to target Y exists because the
inclusion of the past of X reduces the uncertainty about the future of Y, given its own past. We
investigated the influence of the delay on the TE. To this end, we estimated the TE across all pairs
of contacts per participant, for rewarding and punishing trials, at every possible delay up to 350ms
(Fig. S2). We found a maximum information flow for delays up to 176 ms. Therefore, for the main
text analyses, we used a range centered around 176+60ms ([116, 236]ms).
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Fig S2. Optimal delay interval for maximizing information transfer. Modulation of transfer entropy (TE in bits) as a function of
the delay between source and target areas. In blue, the TE computed across rewarding trials and in red, the TE computed across
punishing trials. Shaded areas surrounding the time courses represent the 95% confidence interval estimated using a bootstrapping
strategy.
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Differential cortico-cortical directional interactions

We estimated the transfer entropy (TE) on the gamma power during the rewarding (TEg.,) and
punishment conditions (TE,,,). As in the main text, we computed the TE for all pairs of brain
regions within delays between 116 and 236 msec and detected temporal clusters where the TE
significantly differed between conditions (TEg., > TEp,, or TEy,, > TEg.,). Only two pairs of brain
regions displayed statistically-significant modulations in TE (Fig. S3). The TE from the aINS to the
dIPFC (TE,ns_aprc) during the punishment condition and the TE from the vimPFC to the IOFC
(TE,mprc—iorc) during the rewarding condition. No other brain interactions were found significant.
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Fig S3. Contextual modulation of the information transfer. Time courses of transfer entropy (TE, in bits) estimated during the
rewarding condition (TEg,, in blue) and punishing condition (TE,,, in red). Significant differences (p<0.05, cluster-based correction,
non-parametric randomization across epochs) of TE between conditions are displayed with horizontal bold lines (blue for TEg,,, >
TEp,, and red for TE,,, > TEg.,). Shaded areas represent the SEM. The vertical grey line at 0 seconds represents the outcome
presentation.
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Interactions about the full PE signals
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Fig S4. Cortico-cortical interactions about the full PE signals. Dynamic interaction information (Il in bits) between-regions about
the full prediction error (IIpz). Hot and cold colors indicate synergy- and redundancy-dominated interactions about the full PE.
Significant clusters of Il are displayed with a horizontal bold green line (p<0.05, cluster-based correction, non-parametric
randomization across epochs). Shaded areas represent the SEM. The vertical gray line at 0 seconds represents the outcome

presentation.
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Interaction information binned according to the local specificity

We binned the II about the full PE (i.e. by concatenating the RPE and PPE) according to the local
specificity of the bipolar derivations in the dIPFC and vmPFC i.e. contacts with gamma activity
modulated according to the RPE only, to the PPE only or to both RPE and PPE (Fig. 2B). As a
result, we binned the II into four categories: the I1zp; gpr and Ilpp; ppp respectively reflecting the 11
estimated between recordings specific to the RPE and PPE, the 1/, zpr between recordings PPE
and RPE specific and the I/,;,, for the remaining possibilities (i.e. RPE-Both, PPE-Both and
Both-Both) (Fig. SSA). We reported a significant cluster II about the full PE approximately between
[250; 600]ms (Fig. 5). Therefore, we estimated the mean II across time points between [250;
600]ms within each of the four categories, for each pair of recordings (Fig. S5B) and computed a
one-sample t-test against 0 (Table 1). Only the Ilppy ppr (pink) and 11, (purple) mean showed a
significant difference from 0. However, the number of pairs of recordings for the Ilzp; ppp (red, 7
pairs) and Ilppz pp; (blue, 6 pairs) were probably too small to find a significant difference.
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Fig SS. Interaction information binned according to the local specificity. (4) Dynamic interaction information (II in bits) between
the dIPFC and vmPFC (Ilgppc.ymprc) binned according to the local specificity toward the RPE and PPE. Shaded areas represent the
SEM. The vertical gray line at 0 seconds represents the outcome presentation. (B) Mean II between time points from 250 to 600ms
after outcome presentation per category of local specificity. Each individual point represents one pairs of recordings from the dIPFC
and vmPFC.

T-value P-value P-value dof CI95%
(FDR corrected)
| | P 2,859 0.007** 0.015* 34 [6.5¢-05, 3.9¢-04]
Myixea 2,841 0.008** 0.015* 33 [5.4e-05, 3.3e-04]
Hppppre 1,25 0.2667 0.3556 5 [-7.1e-05, 2.1e-04]
M gpe.reE 0,733 0.4912 0.4912 6 [-3.1e-05, 5.8¢-05]

Table 1. Results of the one sample t-test performed against 0
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